Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New calculations solve an old problem with DNA

21.12.2012
In a recent publication, researchers achieved new accuracy in the ability to measure energy differences between states of molecules, thus predicting which states will be observed: The normal (B-form) DNA will switch to left-handed (Z-form) DNA when it is physically twisted, or when a lot of salt is added to the solution.

Researchers at the University of Luxembourg were able to accurately calculate for the first time the amount of salt which is required to do this. Z-DNA in the cell leads to loss of function and cancer.


The normal (B-form) DNA will switch to left-handed (Z-form) DNA when it is physically twisted, or when a lot of salt is added to the solution. Researchers at the University of Luxembourg were able to accurately calculate for the first time the amount of salt which is required to do this.
Josh Berryman

It has been known since the seventies that excessive salt causes DNA to reverse its twist, from a right-handed spiral to a left-handed one. DNA in the Z form is treated by our natural repair enzymes as damaged, and is therefore usually deleted from the cell. Deletion of genetic material can lead to cancer or to other problems, so the B-Z transition is no mere curiosity. However such is the complexity of the DNA molecule that a theoretical explanation which correctly predicts the amount of salt to do this has never before been found.

Dr. Josh Berryman and Professor Tanja Schilling of the University of Luxembourg have now been able to find a method of calculation which predicts this transition with unprecedented accuracy. With this success in describing the most enigmatic of molecules, the team is optimistic that they will be able to perform similar mathematical analyses for a variety of other substances.

... more about:
»B-form »DNA »DNA molecule »Z-form »energy differences

"It will enable us to predict material properties such as melting temperatures or elasticity. And this will be done with high accuracy using our new technique. Hence, we can now design new materials and biomaterials on the computer more effectively than before," said Prof. Schilling.

Prof Schilling and Dr Berryman are physicists at the University’s Physics and Material Sciences Research Unit, which comprises a team of 50 researchers.

The paper entitled “Free Energies by Thermodynamic Integration Relative to an Exact Solution, Used to Find the Handedness-Switching Salt Concentration for DNA” was published in the Journal of Chemical Theory and Computation.

Britta Schlüter | idw
Further information:
http://www.uni.lu
http://pubs.acs.org/doi/abs/10.1021/ct3005968

Further reports about: B-form DNA DNA molecule Z-form energy differences

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>