Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New calculations on blackbody energy set the stage for clocks with unprecedented accuracy

12.05.2011
A team of physicists from the United States and Russia announced today* that it has developed a means for computing, with unprecedented accuracy, a tiny, temperature-dependent source of error in atomic clocks. Although small, the correction could represent a big step towards atomic timekeepers' longstanding goal of a clock with a precision equivalent to one second of error every 32 billion years—longer than the age of the universe.

Precision timekeeping is one of the bedrock technologies of modern science and technology. It underpins precise navigation on Earth and in deep space, synchronization of broadband data streams, precision measurements of motion, forces and fields, and tests of the constancy of the laws of nature over time.

"Using our calculations, researchers can account for a subtle effect that is one of the largest contributors to error in modern atomic timekeeping," says lead author Marianna Safronova of the University of Delaware, the first author of the presentation**. "We hope that our work will further improve upon what is already the most accurate measurement in science: the frequency of the aluminum quantum-logic clock," adds co-author Charles Clark, a physicist at the Joint Quantum Institute, a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland.

The paper was presented today at the 2011 Conference on Lasers and Electro-Optics in Baltimore, Md.

The team studied an effect that is familiar to anyone who has basked in the warmth of a campfire: heat radiation. Any object at any temperature, whether the walls of a room, a person, the Sun or a hypothetical perfect radiant heat source known as a "black body," emits heat radiation. Even a completely isolated atom senses the temperature of its environment. Like heat swells the air in a hot-air balloon, so-called "blackbody radiation" (BBR) enlarges the size of the electron clouds within the atom, though to a much lesser degree—by one part in a hundred trillion, a size that poses a severe challenge to precision measurement.

This effect comes into play in the world's most precise atomic clock, recently built by NIST researchers***. This quantum-logic clock, based on atomic energy levels in the aluminum ion, Al+, has an uncertainty of 1 second per 3.7 billion years, translating to 1 part in 8.6 x 10-18, due to a number of small effects that shift the actual tick rate of the clock.

To correct for the BBR shift, the team used the quantum theory of atomic structure to calculate the BBR shift of the atomic energy levels of the aluminum ion. To gain confidence in their method, they successfully reproduced the energy levels of the aluminum ion, and also compared their results against a predicted BBR shift in a strontium ion clock recently built in the United Kingdom. Their calculation reduces the relative uncertainty due to room-temperature BBR in the aluminum ion to 4 x 10-19 , or better than 18 decimal places, and a factor of 7 better than previous BBR calculations.

Current aluminum-ion clocks have larger sources of uncertainty than the BBR effect, but next-generation aluminum clocks are expected to greatly reduce those larger uncertainties and benefit substantially from better knowledge of the BBR shift.

* Originally posted on May 6, 2011.

** M. Safronova, M. Kozlov and C.W. Clark, "Precision Calculation of Blackbody Radiation Shifts for Metrology at the 18th Decimal Place." Paper CFC 3, presented on May 6,2011, at CLEO 2011, Baltimore, Md. Also presented on May 3, 2011, at the 2011 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, San Francisco, Calif., Paper 7175.

*** See the Feb. 4, 2010 NIST announcement, "NIST's Second 'Quantum Logic Clock' Based on Aluminum Ion is Now World's Most Precise Clock" at www.nist.gov/pml/div688/logicclock_020410.cfm.

Ben Stein | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: BBR Baltimore Conference Frequency NIST Precision Quantum energy levels heat radiation

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>