Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brave new World: Insight into Munich’s laser physics

18.05.2011
Carbon as a razor-thin transparent foil is one of the innovations presented by the "Munich-Centre of Advanced Photonics" (MAP) at the "LASER – World of Photonics" on May 23-26 in Munich. High-power lasers knock out pulsed ion beams out of these foils, which will be used as a low-cost and gentle alternative for cancer therapy in a few years. At the joint booth of the Bavarian Universities (B2.407) MAP and the future "Centre for Advanced Laser Applications" (CALA) present how cancer diagnostics and therapy benefit from the new lasers.

Research objectives of the Cluster of Excellence MAP, which is financed by the Deutsche Forschungsgemeinschaft, are more powerful lasers with higher intensities and shorter pulses. With the help of these lasers it is possible to show structures of complex biomolecules, arthritically modified cartilages at a very early stage and tiniest tumors. Besides tumor diagnosis, tumor therapy is an important long-term objective on which physicists and medical scientists jointly research.

The power enhancement of the lasers demands special amplifier techniques and – above all – special mirrors which have not been on the market yet. In the MAP Service Centre scientists produce chirped mirrors, as they are called: Custom-made mirrors for every wavelength and every research problem. The production requires extensive experimental and computational efforts, which sometimes take several days.

The modern research lasers are strong enough to generate and accelerate particles such as ions and electrons. This is the second main area of the MAP Service Centre: As the only team in the world they produce razor-thin carbon foils of atoms in a diamond-like structure. If an intense laser pulse strikes such a foil it separates the atoms in faster electrons and heavier and thus slower ions. These particles are driven by light pressure and automatically align in single pulses. For these two main areas the MAP Service Centre received the award Selected Landmark 2011.

Visitors may obtain more detailed information at two public talks of MAP scientists at the Application Panel, which takes place on May 24 at 2-4:30 pm. Dr. Ronald Sroka organizes the Application Panel and will give an overview on modern applications of lasers in medicine. Prof. Jan Wilkens, a medical physicist at Klinikum rechts der Isar, will explain his vision of a combined and compact device for the diagnosis and therapy of tumors and how all this will finally be within reach with the help of laser-plasma acceleration. Dr. Martin Bech, who works with the Chair of Biomedical Physics at the Technische Universität München (TUM) will show stunning images generated by the group of Prof. Franz Pfeiffer with the phase-contrast and the dark-field techniques over the last few years.

As usual, the World of Photonics Congress will offer an excursion to different laser laboratories in Munich. This year, laboratories of the Ludwig-Maximilians-Universität München (LMU) at the Research Campus in Garching are for the first time open on May 27. Participants may gain an insight into some research projects of the Cluster of Excellence for they will not only be able to see the mirror production but also two laser labs with ultrafast single electron diffraction and ultrafast photo emission spectroscopy.

As a common project of LMU Munich and TUM the Centre for Advanced Laser Applications (CALA) is being built at the Research Campus in Garching.

CALA is based on the research results of the Cluster of Excellence "Munich-Centre for Advanced Photonics" (MAP), but will further develop the laser driven brilliant sources for X-ray and particle beams and research on their possible use in biomedical applications. The emphasis will be on biomedical imaging with X-ray beams for the early detection of cancer and local tumor therapy with laser-generated proton and carbon ion beams. A further research focus is the ultrafast radiation biology with the goal to better understand and optimize the primarily processes of the therapy with ion beams.

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>