Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brave new World: Insight into Munich’s laser physics

18.05.2011
Carbon as a razor-thin transparent foil is one of the innovations presented by the "Munich-Centre of Advanced Photonics" (MAP) at the "LASER – World of Photonics" on May 23-26 in Munich. High-power lasers knock out pulsed ion beams out of these foils, which will be used as a low-cost and gentle alternative for cancer therapy in a few years. At the joint booth of the Bavarian Universities (B2.407) MAP and the future "Centre for Advanced Laser Applications" (CALA) present how cancer diagnostics and therapy benefit from the new lasers.

Research objectives of the Cluster of Excellence MAP, which is financed by the Deutsche Forschungsgemeinschaft, are more powerful lasers with higher intensities and shorter pulses. With the help of these lasers it is possible to show structures of complex biomolecules, arthritically modified cartilages at a very early stage and tiniest tumors. Besides tumor diagnosis, tumor therapy is an important long-term objective on which physicists and medical scientists jointly research.

The power enhancement of the lasers demands special amplifier techniques and – above all – special mirrors which have not been on the market yet. In the MAP Service Centre scientists produce chirped mirrors, as they are called: Custom-made mirrors for every wavelength and every research problem. The production requires extensive experimental and computational efforts, which sometimes take several days.

The modern research lasers are strong enough to generate and accelerate particles such as ions and electrons. This is the second main area of the MAP Service Centre: As the only team in the world they produce razor-thin carbon foils of atoms in a diamond-like structure. If an intense laser pulse strikes such a foil it separates the atoms in faster electrons and heavier and thus slower ions. These particles are driven by light pressure and automatically align in single pulses. For these two main areas the MAP Service Centre received the award Selected Landmark 2011.

Visitors may obtain more detailed information at two public talks of MAP scientists at the Application Panel, which takes place on May 24 at 2-4:30 pm. Dr. Ronald Sroka organizes the Application Panel and will give an overview on modern applications of lasers in medicine. Prof. Jan Wilkens, a medical physicist at Klinikum rechts der Isar, will explain his vision of a combined and compact device for the diagnosis and therapy of tumors and how all this will finally be within reach with the help of laser-plasma acceleration. Dr. Martin Bech, who works with the Chair of Biomedical Physics at the Technische Universität München (TUM) will show stunning images generated by the group of Prof. Franz Pfeiffer with the phase-contrast and the dark-field techniques over the last few years.

As usual, the World of Photonics Congress will offer an excursion to different laser laboratories in Munich. This year, laboratories of the Ludwig-Maximilians-Universität München (LMU) at the Research Campus in Garching are for the first time open on May 27. Participants may gain an insight into some research projects of the Cluster of Excellence for they will not only be able to see the mirror production but also two laser labs with ultrafast single electron diffraction and ultrafast photo emission spectroscopy.

As a common project of LMU Munich and TUM the Centre for Advanced Laser Applications (CALA) is being built at the Research Campus in Garching.

CALA is based on the research results of the Cluster of Excellence "Munich-Centre for Advanced Photonics" (MAP), but will further develop the laser driven brilliant sources for X-ray and particle beams and research on their possible use in biomedical applications. The emphasis will be on biomedical imaging with X-ray beams for the early detection of cancer and local tumor therapy with laser-generated proton and carbon ion beams. A further research focus is the ultrafast radiation biology with the goal to better understand and optimize the primarily processes of the therapy with ion beams.

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>