Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bismuth provides perfect dance partners for quantum computing qubits

03.12.2012
New research has demonstrated a way to make bismuth electrons and nuclei work together as qubits in a quantum computer.

The discovery, published in Nature Materials, takes us a key step further to creating practical quantum computing which could tackle complex programs that would otherwise take the lifetime of the universe to finish.

The collaboration partners are based in the University of Warwick, UCL, ETH Zurich and the USA Sandia National Labs.

Information on our normal computers is stored as bits, which are either ones or zeros. Quantum bits work differently in that each quantum bit can try out being a one and a zero at the same time, which makes them much more powerful for solving certain problems.

Researchers have explored influencing the direction of spin in electrons to create those states but this approach has had its challenges.

Dr Gavin Morley from the University of Warwick's Department of Physics said: "Bismuth atoms in silicon crystals are great at working as quantum bits. Each bismuth atom has a spare electron, which has a "spin" that can be influenced by magnets.

"If we put the electron into a magnet, it lines up with the magnetic field, behaving like a compass needle.

"We can control the direction that the electron is pointing in, using microwaves. Microwaves let us flip the direction the electron is pointing in, and these "up and down" directions are what constitute the "one and zero" in our quantum bit.

"Unfortunately, our electron is constantly prone to interference from nearby atoms that are out of our control.

"And the more time we waste, the greater the chance that our poor electron will suffer from interference, making it unusable to us."

"Now, this electron is coupled to the bismuth nucleus, which has its own spin: a smaller compass needle. Using this as an extra quantum bit and flipping it at the same time as our electron, would really help out. We can control this smaller compass needle too, but as it's smaller, it takes longer to control, and we need to use radiowaves instead of microwaves to do this."

"The good news is that as it's slow to respond, our bismuth nucleus's smaller compass needle suffers less from interference by nearby rogue atoms than our electron's larger compass needle. Unfortunately in the time we spend controlling our bismuth nucleus, these rogue atoms interfere with our electron."

"However we found that if we reduce the magnetic field just enough, then the electron and the nucleus become hybridized. Our new experiments at ETH Zurich show that through hybridisation, we can flip both compass needles easily using microwaves."

Dr Morley compares it to the magnetic resonance imaging we find in hospitals.

He said: "MRI works by controlling the nuclear spins in your body.

"We have hybridized electron and nuclear spins and found that this makes it easier to control them.

"It's an easy new way to make slow and fast quantum bits work together. There are lots more challenges to face before anyone has a working computer with enough quantum bits to be useful, but with this hybridization as part of a computer's design, we are one step closer."

The paper entitled "Quantum control of hybrid nuclear–electronic qubits" is published in Nature Materials doi: 10.1038/NMAT3499 (2012) and is by Gavin W Morley, Petra Lueders, M Hamed Mohammady, Setrak J Balian, Gabriel Aeppli, Christopher WM Kay, Wayne M Witzel, Gunnar Jeschke & Tania S Monteiro, Nature Materials doi: 10.1038/NMAT3499 (2012).

Contacts

Gavin Morley, Department of Physics, University of Warwick. gavin.morley@warwick.ac.uk tel 44-2476-150-801 or 44-7894-984-021

Anna Blackaby, University of Warwick press officer

Anna Blackaby | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>