Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic Particles Help Solve Planetary Puzzle

12.11.2009
A University of Arkansas professor and his colleagues have shown that the Earth’s mantle contains the same isotopic signatures from magnesium as meteorites do, suggesting that the planet formed from meteoritic material. This resolves a long-standing debate in the field over the planet’s origins.

Fangzhen Teng, assistant professor of geosciences at the University of Arkansas, and Wei Yang and Hong-Fu Zhang of the Chinese Academy of Sciences report their findings in Earth and Planetary Science Letters.

The researchers examined magnesium isotopes in chondrites – meteorites containing elements formed from the condensation of hot gases in the solar system. They also looked at samples from different depths in the Earth’s mantle. Isotopes have the same chemical properties, but different weights, so some processes cause what looks like the same material to behave differently. The different proportions of isotopes within a rock can tell scientists something about the original source of the material.

Magnesium makes a particularly good marker for planetary origins because, first, isotopes of magnesium can be separated during evaporation and condensation in the solar system and, second and more uniquely, one isotope of magnesium, Mg26, is a decay product of Al26, which existed in the early solar system for less than 5 million years. Thus, materials with different origins and ages contain different amounts of Al26, which results in different amounts of magnesium isotope.

“Isotopes are very sensitive to sources of material,” Teng said. “We can use isotopes as a tool to further understand planetary origins.”

Teng’s group analyzed different types of rocks from different depths of the Earth’s mantle from a site in North China and compared the results to those of samples from chondritic meteorites. They looked at magnesium isotopes in samples from the whole rock, but they also separated out minerals from the rocks and examined the magnesium isotope composition of these minerals as well.

“The samples from Earth were slightly different from one another,” Teng said. Their compositions also matched closely with those of the meteorites, the researchers report.

“That’s very strong evidence that Earth has a chondritic magnesium composition,” Teng said.

Teng is a professor in the J. William Fulbright College of Arts and Sciences and is a member of the Arkansas Center for Space and Planetary Sciences.

Teng’s research is funded by the National Science Foundation.

CONTACTS:
Fangzhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-4524, fteng@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>