Atomic Particles Help Solve Planetary Puzzle

Fangzhen Teng, assistant professor of geosciences at the University of Arkansas, and Wei Yang and Hong-Fu Zhang of the Chinese Academy of Sciences report their findings in Earth and Planetary Science Letters.

The researchers examined magnesium isotopes in chondrites – meteorites containing elements formed from the condensation of hot gases in the solar system. They also looked at samples from different depths in the Earth’s mantle. Isotopes have the same chemical properties, but different weights, so some processes cause what looks like the same material to behave differently. The different proportions of isotopes within a rock can tell scientists something about the original source of the material.

Magnesium makes a particularly good marker for planetary origins because, first, isotopes of magnesium can be separated during evaporation and condensation in the solar system and, second and more uniquely, one isotope of magnesium, Mg26, is a decay product of Al26, which existed in the early solar system for less than 5 million years. Thus, materials with different origins and ages contain different amounts of Al26, which results in different amounts of magnesium isotope.

“Isotopes are very sensitive to sources of material,” Teng said. “We can use isotopes as a tool to further understand planetary origins.”

Teng’s group analyzed different types of rocks from different depths of the Earth’s mantle from a site in North China and compared the results to those of samples from chondritic meteorites. They looked at magnesium isotopes in samples from the whole rock, but they also separated out minerals from the rocks and examined the magnesium isotope composition of these minerals as well.

“The samples from Earth were slightly different from one another,” Teng said. Their compositions also matched closely with those of the meteorites, the researchers report.

“That’s very strong evidence that Earth has a chondritic magnesium composition,” Teng said.

Teng is a professor in the J. William Fulbright College of Arts and Sciences and is a member of the Arkansas Center for Space and Planetary Sciences.

Teng’s research is funded by the National Science Foundation.

CONTACTS:
Fangzhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
479-575-4524, fteng@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Media Contact

Melissa Lutz Blouin Newswise Science News

More Information:

http://www.uark.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors