Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The atomic clock with the world's best long-term accuracy is revealed after evlauation

26.08.2011
A caesium fountain clock that keeps the United Kingdom's atomic time is now the most accurate long-term timekeeper in the world, according to a new evaluation of the clock that will be published in the October 2011 issue of the international scientific journal Metrologia by a team of physicists at the National Physical Laboratory (NPL) in the United Kingdom and Penn State University in the United States. An early posting of the paper on the journal's online site will occur on 26 August 2011.

The clock is one of an elite group of caesium fountain clocks that have been built by the timing labs in Europe, the United States, and Japan as their national "primary frequency standard" for the measurement of time. These national standards are averaged to produce International Atomic Time and Universal Coordinated Time, which are used as time scales worldwide for such critical processes as global communications, satellite navigation and surveying, and time stamping for the computerized transactions of financial and stock markets. The methods used to improve the U.K. clock also can be used to evaluate the caesium fountain clocks of other countries, substantially improving the world's most accurate methods of keeping time.

"The improvements that we report in our paper have reduced significantly the caesium fountain clock's two largest sources of measurement uncertainties -- Doppler shifts and the microwave-lensing frequency shift," said NPL Project Leader Krzysztof Szymaniec. Other authors of the paper are Ruoxin Li and Professor of Physics Kurt Gibble at Penn State. The physicists evaluated the recently upgraded caesium fountain clock with physical measurements at NPL and mathematical models developed at Penn State.

"Kurt Gibble, at Penn State, made major contributions to the field of primary frequency standards by developing models for the systematic effects within caesium fountain clocks," Szymaniec said. "The uncertainties of those effects, now reduced several fold with the new models and numerical calculations provided by Gibble's group, have been verified at the National Physical Laboratory and also by the fountain clock group in Paris. Together with other improvements of the caesium fountain, these models and numerical calculations have improved the accuracy of the UK's caesium fountain clock , NPL-CsF2, by reducing the uncertainty to 2.3 × 10-16 -- the lowest value for any primary national standard so far."

Scientists estimate the accuracy of a caesium fountain clock by evaluating the uncertainties of all the physical effects known to cause frequency shifts in the clock's operation, including atomic interactions with external fields, collisions between atoms, and the construction of the atomic clock's subsystems, such as its microwave cavity. The two largest sources of these measurement uncertainties are frequency shifts caused by the Doppler effect and microwave-lensing. "One of the improvements that our model contributed is an improved understanding of the extremely small Doppler shifts that occur in caesium fountain clocks," Gibble said. While the acoustic Doppler shift of a car horn is well known in everyday lift, he explained that Doppler shifts for light are too small for people to notice. "If you are walking down the sidewalk while looking at a red traffic light, your eyes cannot perceive the small Doppler shifts resulting from your movement that shift the light toward the blue end of the spectrum," Gibble said. "This change in color is just 1/100 millionth of the difference between red and blue. In the NPL-CSF2 clock, our model now shows that these Doppler shifts are even 100 million times smaller than that."

The other major source of measurement uncertainties -- microwave lensing -- results from the forces that microwaves in the clock exert on the atoms used to measure the length of a second. "An international agreement on the definition of the second is of fundamental importance in timekeeping," Szymaniec said. He explained that the length of a second, by international agreement, is the "transition frequency between two ground-state sublevels of a caesium 133 atom." To measure this frequency, caesium fountain clocks probe laser-cooled caesium atoms twice as they travel through the clock's microwave cavity -- once on their way up and again on their way down. To achieve an accurate assessment of the clock's frequency, the physicists had to include in their models an understanding of how microwaves push on the quantum-mechanical atoms. As a result, Gibble said, "We now know that the NPL clock is so precise that it has to be considered as an atom interferometer."

"The first atomic clock was demonstrated at NPL and we have lead research into providing ever more accurate time keeping," Szymaniec said. "Combining our own measurement expertise with that of our colleagues at Penn State, we have shown that timekeeping at NPL continues to be some of the most advanced in the world."

This research was supported by the National Science Foundation and Penn State University in the United States, and by the National Measurement Office in the United Kingdom.

CONTACTS

Krzysztof Szymaniec: (+44) 20-8943-6460, Krzysztof.Szymaniec@npl.co.uk

Kurt Gibble: Send e-mail to keg15@psu.edu to request Dr. Gibble's cell number (He is traveling now.) Office phone after 29 August 2011: (+1) 814-863-5343

Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

IMAGES A high-resolution image is online at http://www.science.psu.edu/news-and-events/2011-news/Gibble8-2011.

ABOUT THE NATIONAL PHYSICAL LABORATORY

The National Physical Laboratory (NPL) is the UK's National Measurement Institute and one of the UK's leading science facilities and research centers. It is a world-leading center of excellence in developing and applying the most accurate standards available for science and technology. NPL occupies a unique position as the U.K.'s National Measurement Institute and sits at the intersection between scientific discovery and real-world applications. Its expertise and original research have underpinned quality of life, innovation, and competitiveness for U.K. citizens and business for more than a century.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>