Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The atomic clock with the world's best long-term accuracy is revealed after evlauation

26.08.2011
A caesium fountain clock that keeps the United Kingdom's atomic time is now the most accurate long-term timekeeper in the world, according to a new evaluation of the clock that will be published in the October 2011 issue of the international scientific journal Metrologia by a team of physicists at the National Physical Laboratory (NPL) in the United Kingdom and Penn State University in the United States. An early posting of the paper on the journal's online site will occur on 26 August 2011.

The clock is one of an elite group of caesium fountain clocks that have been built by the timing labs in Europe, the United States, and Japan as their national "primary frequency standard" for the measurement of time. These national standards are averaged to produce International Atomic Time and Universal Coordinated Time, which are used as time scales worldwide for such critical processes as global communications, satellite navigation and surveying, and time stamping for the computerized transactions of financial and stock markets. The methods used to improve the U.K. clock also can be used to evaluate the caesium fountain clocks of other countries, substantially improving the world's most accurate methods of keeping time.

"The improvements that we report in our paper have reduced significantly the caesium fountain clock's two largest sources of measurement uncertainties -- Doppler shifts and the microwave-lensing frequency shift," said NPL Project Leader Krzysztof Szymaniec. Other authors of the paper are Ruoxin Li and Professor of Physics Kurt Gibble at Penn State. The physicists evaluated the recently upgraded caesium fountain clock with physical measurements at NPL and mathematical models developed at Penn State.

"Kurt Gibble, at Penn State, made major contributions to the field of primary frequency standards by developing models for the systematic effects within caesium fountain clocks," Szymaniec said. "The uncertainties of those effects, now reduced several fold with the new models and numerical calculations provided by Gibble's group, have been verified at the National Physical Laboratory and also by the fountain clock group in Paris. Together with other improvements of the caesium fountain, these models and numerical calculations have improved the accuracy of the UK's caesium fountain clock , NPL-CsF2, by reducing the uncertainty to 2.3 × 10-16 -- the lowest value for any primary national standard so far."

Scientists estimate the accuracy of a caesium fountain clock by evaluating the uncertainties of all the physical effects known to cause frequency shifts in the clock's operation, including atomic interactions with external fields, collisions between atoms, and the construction of the atomic clock's subsystems, such as its microwave cavity. The two largest sources of these measurement uncertainties are frequency shifts caused by the Doppler effect and microwave-lensing. "One of the improvements that our model contributed is an improved understanding of the extremely small Doppler shifts that occur in caesium fountain clocks," Gibble said. While the acoustic Doppler shift of a car horn is well known in everyday lift, he explained that Doppler shifts for light are too small for people to notice. "If you are walking down the sidewalk while looking at a red traffic light, your eyes cannot perceive the small Doppler shifts resulting from your movement that shift the light toward the blue end of the spectrum," Gibble said. "This change in color is just 1/100 millionth of the difference between red and blue. In the NPL-CSF2 clock, our model now shows that these Doppler shifts are even 100 million times smaller than that."

The other major source of measurement uncertainties -- microwave lensing -- results from the forces that microwaves in the clock exert on the atoms used to measure the length of a second. "An international agreement on the definition of the second is of fundamental importance in timekeeping," Szymaniec said. He explained that the length of a second, by international agreement, is the "transition frequency between two ground-state sublevels of a caesium 133 atom." To measure this frequency, caesium fountain clocks probe laser-cooled caesium atoms twice as they travel through the clock's microwave cavity -- once on their way up and again on their way down. To achieve an accurate assessment of the clock's frequency, the physicists had to include in their models an understanding of how microwaves push on the quantum-mechanical atoms. As a result, Gibble said, "We now know that the NPL clock is so precise that it has to be considered as an atom interferometer."

"The first atomic clock was demonstrated at NPL and we have lead research into providing ever more accurate time keeping," Szymaniec said. "Combining our own measurement expertise with that of our colleagues at Penn State, we have shown that timekeeping at NPL continues to be some of the most advanced in the world."

This research was supported by the National Science Foundation and Penn State University in the United States, and by the National Measurement Office in the United Kingdom.

CONTACTS

Krzysztof Szymaniec: (+44) 20-8943-6460, Krzysztof.Szymaniec@npl.co.uk

Kurt Gibble: Send e-mail to keg15@psu.edu to request Dr. Gibble's cell number (He is traveling now.) Office phone after 29 August 2011: (+1) 814-863-5343

Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

IMAGES A high-resolution image is online at http://www.science.psu.edu/news-and-events/2011-news/Gibble8-2011.

ABOUT THE NATIONAL PHYSICAL LABORATORY

The National Physical Laboratory (NPL) is the UK's National Measurement Institute and one of the UK's leading science facilities and research centers. It is a world-leading center of excellence in developing and applying the most accurate standards available for science and technology. NPL occupies a unique position as the U.K.'s National Measurement Institute and sits at the intersection between scientific discovery and real-world applications. Its expertise and original research have underpinned quality of life, innovation, and competitiveness for U.K. citizens and business for more than a century.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>