Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asymmetry may provide clue to superconductivity

21.06.2012
Iron-based high-temp superconductors show unexpected electronic asymmetry
Japanese and U.S. physicists are offering new details this week in the journal Nature regarding intriguing similarities between the quirky electronic properties of a new iron-based high-temperature superconductor (HTS) and its copper-based cousins.

While investigating a recently discovered iron-based HTS, the researchers found that its electronic properties were different in the horizontal and vertical directions. This electronic asymmetry was measured across a wide range of temperatures, including those where the material is a superconductor. The asymmetry was also found in materials that were “doped” differently. Doping is a process of chemical substitution that allows both copper- and iron-based HTS materials to become superconductors.

“The robustness of the reported asymmetric order across a wide range of chemical substitutions and temperatures is an indication that this asymmetry is an example of collective electronic behavior caused by quantum correlation between electrons,” said study co-author Andriy Nevidomskyy, assistant professor of physics at Rice University in Houston.

The study by Nevidomskyy and colleagues from Kyoto University in Kyoto, Japan, and the Japan Synchrotron Radiation Research Institute (JASRI) in Hyogo offers new clues to scientists studying the mystery of high-temperature superconductivity, one of physics’ greatest unsolved mysteries.

Superconductivity occurs when electrons form a quantum state that allows them to flow freely through a material without electrical resistance. The phenomenon only occurs at extremely cold temperatures, but two families of layered metal compounds — one based on copper and the other on iron — perform this mind-bending feat just short of or above the temperature of liquid nitrogen — negative 321 degrees Fahrenheit — an important threshold for industrial applications. Despite more than 25 years of research, scientists are still debating what causes high-temperature superconductivity.

Copper-based HTSs were discovered more than 20 years before their iron-based cousins. Both materials are layered, but they are strikingly different in other ways. For example, the undoped parent compounds of copper HTSs are nonmetallic, while their iron-based counterparts are metals. Due to these and other differences, the behavior of the two classes of HTSs are as dissimilar as they are similar — a fact that has complicated the search for answers about how high-temperature superconductivity arises.

One feature that has been found in both compounds is electronic asymmetry — properties like resistance and conductivity are different when measured up and down rather than side to side. This asymmetry, which physicists also call “nematicity,” has previously been found in both copper-based and iron-based high-temperature superconductors, and the new study provides the strongest evidence yet of electronic nematicity in HTSs.

In the study, the researchers used the parent compound barium iron arsenide, which can become a superconductor when doped with phosphorus. The temperature at which the material becomes superconducting depends upon how much phosphorus is used. By varying the amount of phosphorus and measuring electronic behavior across a range of temperatures, physicists can probe the causes of high-temperature superconductivity.

Prior studies have shown that as HTS materials are cooled, they pass through a series of intermediate electronic phases before they reach the superconducting phase. To help see these “phase changes” at a glance, physicists like Nevidomskyy often use graphs called “phase diagrams” that show the particular phase an HTS will occupy based on its temperature and chemical doping.

“With this new evidence, it is clear that the nematicity exists all the way into the superconducting region and not just in the vicinity of the magnetic phase, as it had been previously understood,” said Nevidomskyy, in reference to the line representing the boundary of the nematic order. “Perhaps the biggest discovery of this study is that this line extends all the way to the superconducting phase.”

He said another intriguing result is that the phase diagram for the barium iron arsenide bears a striking resemblance to the phase diagram for copper-based high-temperature superconductors. In particular, the newly mapped region for nematic order in the iron-based material is a close match for a region dubbed the “pseudogap” in copper-based HTSs.

“Physicists have long debated the origins and importance of the pseudogap as a possible precursor of high-temperature superconductivity,” Nevidomskyy said. “The new results offer the first hint of a potential analog for the pseudogap in an iron-based high-temperature superconductor.”

The nematic order in the barium iron arsenide was revealed during a set of experiments at Kyoto University that measured the rotational torque of HTS samples in a strong magnetic field. These findings were further corroborated by the results of X-ray diffraction performed at JASRI and aided by Nevidomskyy’s theoretical analysis. Nevidomskyy and his collaborators believe that their results could help physicists determine whether electronic nematicity is essential for HTS.

Nevidomskyy said he expects similar experiments to be conducted on other varieties of iron-based HTS. He said additional experiments are also needed to determine whether the nematic order arises from correlated electron behavior.

Nevidomskyy, a theoretical physicist, specializes in the study of correlated electron effects, which occur when electrons lose their individuality and behave collectively.

“One way of thinking about this is to envision a crowded stadium of football fans who stand up in unison to create a traveling ‘wave,’” he said. “If you observe just one person, you don’t see ‘the wave.’ You only see the wave if you look at the entire stadium, and that is a good analogy for the phenomena we observe in correlated electron systems.”

Nevidomskyy joined the research team on the new study after meeting the lead investigator, Yuji Matsuda, at the Center for Physics in Aspen, Colo., in 2011. Nevidomskyy said Matsuda’s data offers intriguing hints about a possible connection between nematicity and high-temperature superconductivity.

“It could just be serendipity that nematicity happens in both the superconducting and the nonsuperconducting states of these materials,” Nevidomskyy said. “On the other hand, it could be that superconductivity is like a ship riding on a wave, and that wave is created by electrons in the nematic collective state.”

Study co-authors include S. Kasahara, H.J. Shi, K. Hashimoto, S. Tonegawa, Y. Mizukami, T. Shibauchi and T. Terashima, all of Kyoto University; K. Sugimoto of JASRI; T. Fukuda of the Japan Atomic Energy Agency. The research was funded by the Japanese Society for the Promotion of Science, the Japanese Ministry of Education, Culture, Sports, Science and Technology, and the collaboration was made possible by the Aspen Center for Physics.

High-resolution images are available for download at:

http://news.rice.edu/wp-content/uploads/2012/06/0622_PNICTIDE_Andriy-lg.jpg
CAPTION: Andriy Nevidomskyy
CREDIT: Jeff Fitlow/Rice University

http://news.rice.edu/wp-content/uploads/2012/06/0622_PNICTIDE_Cantilever-lg.jpg
CAPTION: This image shows a microscopic sample of a high-temperature superconductor glued to the tip of a cantilever. To study the magnetic properties of the sample, scientists applied a magnetic field and measured the torque that was transferred from the sample to the cantilever.
CREDIT: Shigeru Kasahara /Kyoto University

http://news.rice.edu/wp-content/uploads/2012/06/0622_PNICTIDE_Shigeru-lg.jpg
CAPTION: Shigeru Kasahara, the study’s first author, with the cryogenic apparatus used in the experiments.
CREDIT: Kyoto University

A copy of the Nature paper is available at:
http://www.nature.com/nature/journal/v486/n7403/full/nature11178.html

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>