Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists Target Mystery of Powerful Particles

25.03.2014

Every second, our bodies and the objects around us are struck by cosmic rays that come mostly from sources deep in space. The highest-energy cosmic rays are the most energetic particles in the universe—far more powerful than anything humans could produce— but their origins are a mystery.

University of Chicago astrophysicist Angela Olinto is helping to unravel that stubborn riddle by leading the United States collaboration on an international project to deploy a cosmic ray telescope on the International Space Station later this decade. The instrument will peer back at Earth to detect the collisions of cosmic rays with the atmosphere, which could shed light on what produces the enigmatic particles.

“This first space mission for the highest-energy particles may pioneer the space exploration of the Earth’s atmosphere as a giant particle detector,” wrote Olinto, the Homer J. Livingston Professor in Astronomy & Astrophysics, in Il Nuovo Saggiatore, an Italian science magazine.

Funded by a $4.4 million grant from the National Aeronautics and Space Agency, Olinto and her colleagues are part of a 15-nation effort to build the 2.5-meter ultraviolet telescope, called the Extreme Universe Space Observatory.

No one knows what they will find. Ultra high-energy cosmic rays may come from supermassive black holes at the centers of nearby galaxies. A far less likely possibility is that they are decaying particles left over from the Big Bang. These subatomic particles hit the atmosphere with the energy of a tennis ball traveling at 167 miles an hour. The impact produces a giant cascade of many tens of billions of secondary particles, which to date have been observed only from Earth-based detectors.

“The mechanism behind this extreme acceleration challenges our imagination,” Olinto says.

UChicago has a long history of research in cosmic rays, including more than half a century of balloon- and spacecraft-borne experiments conducted by scientists in the Enrico Fermi Institute. Austrian physicist Victor Hess discovered cosmic rays in 1912; surprisingly, he discovered that cosmic-ray intensity increased with altitude.

That chance discovery showcases “a beautiful aspect of science,” says 1980 Nobel laureate James Cronin, University Professor Emeritus in Physics. “The discovery was that radiation is coming from outer space into Earth. One had no idea what this radiation was, but nevertheless it was there.”

Clashing Nobel laureates

Originally called höhenstrahlung—German for “radiation from above—the radiation has been known as cosmic rays since Robert A. Millikan coined the term in 1928. Millikan later would trade barbs with his former UChicago student and fellow Nobel laureate, Arthur Holly Compton, over their conflicting cosmic-ray data in a quarrel that made the front page of The New York Times.

“Millikan retorts hotly to Compton in cosmic ray clash,” reported the Times on Dec. 31, 1932. Millikan, a UChicago faculty member from 1898 to 1921, asserted that cosmic rays consisted of gamma radiation. Compton, who was on the faculty from 1923 to 1945, believed that cosmic rays were charged particles. Compton was correct, but Millikan never did revise his opinion.

Cosmic rays pose little risk to organisms on Earth, where the atmosphere and the planet’s magnetic field offer protection. But cosmic rays are a factor in the planning of extended interplanetary missions, where astronauts could be exposed to dangerous levels of radiation. The particles also can affect consumer electronics, causing subtle errors when they strike integrated circuits and other components.

The cosmic ray telescope that scientists hope to install aboard the space station will look down, to detect the giant particle cascades that high-energy cosmic rays produce when they enter Earth’s atmosphere. The late Pierre Auger discovered this phenomenon in 1938. A few years later Auger continued his research during a visit to UChicago.

Cronin and his associates would spend years planning and establishing a sprawling cosmic ray observatory in Argentina that they named after Auger. The Auger Observatory began collecting data in 2004. “We have solved many open questions from the last century, but we didn’t find the source of the highest-energy cosmic rays,” Olinto says.

Despite its vast scale, the Auger Observatory can only detect subatomic particle interactions occurring in the atmosphere directly above its telescopes. But with the installation of a downward-looking ultraviolet telescope on the International Space Station, the entire atmosphere becomes a particle detector. The cosmic processes that produce those particles far exceed the capabilities of mankind’s most powerful accelerator, the Large Hadron Collider in Switzerland. Space-based observations offer a way to overcome the constraints of man-made devices.

“In my opinion, it’s the way to the future,” Olinto says.

Coming full circle

With this approach, the study of cosmic rays and particle physics are coming full circle. “In the early part of the 20th century, cosmic ray research and particle physics were one and the same,” notes Dietrich Müller, a professor emeritus in physics who has devoted much of his career to cosmic-ray research.

But cosmic-ray research and particle physics went their separate ways in the 1950s. Scientists began building powerful particle accelerators, establishing the field of high-energy particle physics. “The other branch was to make measurements above the atmosphere, and that led to what’s now called particle astrophysics, gamma-ray astronomy, and X-ray astronomy,” Müller says.

In the meantime, the Telescope Array Project in Utah and the IceCube Neutrino Observatory at the South Pole have begun offering hints about the source of high-energy cosmic rays. Data from the Telescope Array has found a hotspot in the northern sky that indicates a possible source of ultra high-energy cosmic rays. IceCube also has found two neutrinos coming from that same region of the sky. Neutrinos—sometimes called ghost particles because of their ability to pass through solid matter—offer a second means of determining the source of high-energy cosmic rays.

The hotspot could be a temporary phenomenon that will disappear before the Extreme Observatory begins operating on the space station. “If it persists, then we should be able to confirm that this is the first source ever measured,” Olinto says.

Steve Koppes | newswise
Further information:
http://www.uchicago.edu
http://www.newswise.com/articles/view/615452/?sc=dwhr&xy=5048111

Further reports about: Astrophysicists Observatory Space atmosphere particles rays

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>