Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists discover a quasar that acts as a cosmic lens

21.07.2010
The EPFL's Laboratory of Astrophysics has for the first time observed a quasar that is located between the earth and a more distant galaxy and acts as a gravitational lens

A quasar acting as a gravitational lens has now been observed for the first time. This discovery, made by the EPFL's Laboratory of Astrophysics in cooperation with Caltech, represents an advance in the field, since it will allow scientists to weigh and measure a galaxy that contains a quasar. The news is published today in the journal Astronomy & Astrophysics.

Gravitational lenses are common throughout the universe. They are caused by massive objects such as stars or galaxies that bend rays of light passing nearby. If these objects are between the earth and a more distant light source, the light will therefore be brighter and easier to observe, but also very distorted. If the alignment of the various stellar bodies is almost perfect, the image of the source will be multiplied.

The lens phenomenon is not only an interesting result of Einstein's theory of general relativity; it has also been a valuable astrophysical tool with important applications in the search for extrasolar planets and the study of stars, galaxies, clusters of galaxies and quasars. For example, the nature of the distortion, the number of images of the most distant objects and their position in the sky provide essential information about the distribution of matter in the lens galaxy and allow a measurement of its total matter, including dark matter, to be made.

A quasar is the heart of a galaxy, consisting of a supermassive black hole. The small fraction of the galaxy's mass that is close enough to be swallowed up by the black hole emits light before disappearing forever, giving rise to this extremely bright and transient phenomenon.

To date, about a hundred of these quasars emitting light that is concentrated by a lens galaxy located between them and the earth have been discovered. However, this is the first time that the opposite case has been observed, where the quasar is in the foreground and the galaxy behind it. The interest of this discovery lies in the fact that it provides an unprecedented opportunity to "weigh" a galaxy containing a quasar.

This advance was made thanks to the SLOAN Digital Sky survey database (www.sdss.org), which makes three-dimensional sky maps covering more than a quarter of the sky available to scientists and contains nearly a million galaxies and over 120,000 quasars. A sample of some 23,000 of these quasars in the northern hemisphere was selected by the Laboratory of Astrophysics team. In the end, only four of them seemed to act as a gravitational lens.

One of these was studied using the Keck telescope (Caltech) on Mauna Kea peak in Hawaii. These images will be supplemented in the coming months with very high-quality photographs from the Hubble Space Telescope, which will reveal more about the nature of this particular quasar.

Contact:

- Professor Georges Meylan, Director of the EPFL's Laboratory of Astrophysics, georges.meylan@epfl.ch, tel. +41 22 379 24 25 or +41 21 693 06 44 or cell +41 79 856 34 85.

- Frederic Courbin, EPFL's Laboratory of Astrophysics, frederic.courbin@epfl.ch or +41 22 379 24 18

- S. George Djorgovski, California Institute of Technology (Caltech), george@astro.caltech.edu or +1 (626) 395-4415

Links and documents:

- Youtube video:
http://www.youtube.com/watch?v=xRloUn9wPdg

Sarah Perrin | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>