Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers look to neighboring galaxy for star formation insight

01.12.2011
An international team of astronomers has mapped in detail the star-birthing regions of the nearest star-forming galaxy to our own, a step toward understanding the conditions surrounding star creation.

Led by University of Illinois astronomy professor Tony Wong, the researchers published their findings in the December issue of the Astrophysical Journal Supplement Series.

The Large Magellanic Cloud (LMC) is a popular galaxy among astronomers both for its nearness to our Milky Way and for the spectacular view it provides, a big-picture vista impossible to capture of our own galaxy.

“If you imagine a galaxy being a disc, the LMC is tilted almost face-on so we can look down on it, which gives us a very clear view of what’s going on inside,” Wong said.

Although astronomers have a working theory of how individual stars form, they know very little about what triggers the process or the environmental conditions that are optimal for star birth. Wong’s team focused on areas called molecular clouds, which are dense patches of gas – primarily molecular hydrogen – where stars are born. By studying these molecular clouds and their relationship to new stars in the galaxy, the team hopes to learn more about the metamorphosis of gas clouds into stars.

“When we study star formation, an important question is, what is the environment doing? How does the location of star formation reflect the conditions of that environment? There’s no better place to study the wider environment than the LMC.”

Using a 22-meter-diameter radio telescope in Australia, the astronomers mapped more than 100 molecular clouds in the LMC and estimated their sizes and masses, identifying regions with ample material for making stars. This seemingly simple task engendered a surprising find.

Conventional wisdom states that most of the molecular gas mass in a galaxy is apportioned to a few large clouds. However, Wong’s team found many more low-mass clouds than they expected – so many, in fact, that a majority of the dense gas may be sprinkled across the galaxy in these small molecular clouds, rather than clumped together in a few large blobs.

“We thought that the big clouds hog most of the mass,” Wong said, “but we found that in this galaxy, it appears that the playing field is more level. The low-mass clouds are quite numerous and they actually contribute a significant amount of the mass. This provides the first evidence that the common wisdom about molecular clouds may not apply here.”

The large numbers of these relatively low-mass clouds means that star-forming conditions in the LMC may be relatively widespread and easy to achieve. The findings raise some interesting questions about why some galaxies stopped their star formation while others have continued it.

To better understand the connection between molecular clouds and star formation, the team compared their molecular cloud maps to maps of infrared radiation, which reveal where young stars are heating cosmic dust.

For the comparison, they exploited a carefully selected sample of newborn heavy stars compiled by U. of I. astronomy professor You-Hua Chu and resident scientist Robert Gruendl, who also were co-authors of the paper. These stars are so young that they are still deeply embedded in cocoons of gas and dust.

“It turns out that there’s actually very nice correspondence between these young massive stars and molecular clouds,” Wong said. “That’s not entirely surprising, but it’s reassuring. We assume that these stars have to form in molecular clouds, and it tells us that the molecular clouds do hang around long enough for us to see them associated with these massive young stars.”

Wong hopes to continue to study the relationship between molecular clouds and star formation in greater detail. If researchers can determine the relative ages of young stars, they can correlate these against molecular clouds to figure out which clouds have star formation, how long the clouds live and what eventually leads to their destruction. They also plan to use a newly constructed array of telescopes in Chile to see the cloud environment in higher resolution, pinpointing exactly where inside the molecular cloud star formation will occur.

“This study provides us with our most detailed view of an entire population of clouds in another galaxy,” Wong said. “We can say with great confidence that these clouds are where the stars form, but we are still trying to figure out why they have the properties they do.”

The National Science Foundation and NASA supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/11/1130lmc_TonyWong.html

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>