Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers look to neighboring galaxy for star formation insight

01.12.2011
An international team of astronomers has mapped in detail the star-birthing regions of the nearest star-forming galaxy to our own, a step toward understanding the conditions surrounding star creation.

Led by University of Illinois astronomy professor Tony Wong, the researchers published their findings in the December issue of the Astrophysical Journal Supplement Series.

The Large Magellanic Cloud (LMC) is a popular galaxy among astronomers both for its nearness to our Milky Way and for the spectacular view it provides, a big-picture vista impossible to capture of our own galaxy.

“If you imagine a galaxy being a disc, the LMC is tilted almost face-on so we can look down on it, which gives us a very clear view of what’s going on inside,” Wong said.

Although astronomers have a working theory of how individual stars form, they know very little about what triggers the process or the environmental conditions that are optimal for star birth. Wong’s team focused on areas called molecular clouds, which are dense patches of gas – primarily molecular hydrogen – where stars are born. By studying these molecular clouds and their relationship to new stars in the galaxy, the team hopes to learn more about the metamorphosis of gas clouds into stars.

“When we study star formation, an important question is, what is the environment doing? How does the location of star formation reflect the conditions of that environment? There’s no better place to study the wider environment than the LMC.”

Using a 22-meter-diameter radio telescope in Australia, the astronomers mapped more than 100 molecular clouds in the LMC and estimated their sizes and masses, identifying regions with ample material for making stars. This seemingly simple task engendered a surprising find.

Conventional wisdom states that most of the molecular gas mass in a galaxy is apportioned to a few large clouds. However, Wong’s team found many more low-mass clouds than they expected – so many, in fact, that a majority of the dense gas may be sprinkled across the galaxy in these small molecular clouds, rather than clumped together in a few large blobs.

“We thought that the big clouds hog most of the mass,” Wong said, “but we found that in this galaxy, it appears that the playing field is more level. The low-mass clouds are quite numerous and they actually contribute a significant amount of the mass. This provides the first evidence that the common wisdom about molecular clouds may not apply here.”

The large numbers of these relatively low-mass clouds means that star-forming conditions in the LMC may be relatively widespread and easy to achieve. The findings raise some interesting questions about why some galaxies stopped their star formation while others have continued it.

To better understand the connection between molecular clouds and star formation, the team compared their molecular cloud maps to maps of infrared radiation, which reveal where young stars are heating cosmic dust.

For the comparison, they exploited a carefully selected sample of newborn heavy stars compiled by U. of I. astronomy professor You-Hua Chu and resident scientist Robert Gruendl, who also were co-authors of the paper. These stars are so young that they are still deeply embedded in cocoons of gas and dust.

“It turns out that there’s actually very nice correspondence between these young massive stars and molecular clouds,” Wong said. “That’s not entirely surprising, but it’s reassuring. We assume that these stars have to form in molecular clouds, and it tells us that the molecular clouds do hang around long enough for us to see them associated with these massive young stars.”

Wong hopes to continue to study the relationship between molecular clouds and star formation in greater detail. If researchers can determine the relative ages of young stars, they can correlate these against molecular clouds to figure out which clouds have star formation, how long the clouds live and what eventually leads to their destruction. They also plan to use a newly constructed array of telescopes in Chile to see the cloud environment in higher resolution, pinpointing exactly where inside the molecular cloud star formation will occur.

“This study provides us with our most detailed view of an entire population of clouds in another galaxy,” Wong said. “We can say with great confidence that these clouds are where the stars form, but we are still trying to figure out why they have the properties they do.”

The National Science Foundation and NASA supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/11/1130lmc_TonyWong.html

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>