Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers look to neighboring galaxy for star formation insight

01.12.2011
An international team of astronomers has mapped in detail the star-birthing regions of the nearest star-forming galaxy to our own, a step toward understanding the conditions surrounding star creation.

Led by University of Illinois astronomy professor Tony Wong, the researchers published their findings in the December issue of the Astrophysical Journal Supplement Series.

The Large Magellanic Cloud (LMC) is a popular galaxy among astronomers both for its nearness to our Milky Way and for the spectacular view it provides, a big-picture vista impossible to capture of our own galaxy.

“If you imagine a galaxy being a disc, the LMC is tilted almost face-on so we can look down on it, which gives us a very clear view of what’s going on inside,” Wong said.

Although astronomers have a working theory of how individual stars form, they know very little about what triggers the process or the environmental conditions that are optimal for star birth. Wong’s team focused on areas called molecular clouds, which are dense patches of gas – primarily molecular hydrogen – where stars are born. By studying these molecular clouds and their relationship to new stars in the galaxy, the team hopes to learn more about the metamorphosis of gas clouds into stars.

“When we study star formation, an important question is, what is the environment doing? How does the location of star formation reflect the conditions of that environment? There’s no better place to study the wider environment than the LMC.”

Using a 22-meter-diameter radio telescope in Australia, the astronomers mapped more than 100 molecular clouds in the LMC and estimated their sizes and masses, identifying regions with ample material for making stars. This seemingly simple task engendered a surprising find.

Conventional wisdom states that most of the molecular gas mass in a galaxy is apportioned to a few large clouds. However, Wong’s team found many more low-mass clouds than they expected – so many, in fact, that a majority of the dense gas may be sprinkled across the galaxy in these small molecular clouds, rather than clumped together in a few large blobs.

“We thought that the big clouds hog most of the mass,” Wong said, “but we found that in this galaxy, it appears that the playing field is more level. The low-mass clouds are quite numerous and they actually contribute a significant amount of the mass. This provides the first evidence that the common wisdom about molecular clouds may not apply here.”

The large numbers of these relatively low-mass clouds means that star-forming conditions in the LMC may be relatively widespread and easy to achieve. The findings raise some interesting questions about why some galaxies stopped their star formation while others have continued it.

To better understand the connection between molecular clouds and star formation, the team compared their molecular cloud maps to maps of infrared radiation, which reveal where young stars are heating cosmic dust.

For the comparison, they exploited a carefully selected sample of newborn heavy stars compiled by U. of I. astronomy professor You-Hua Chu and resident scientist Robert Gruendl, who also were co-authors of the paper. These stars are so young that they are still deeply embedded in cocoons of gas and dust.

“It turns out that there’s actually very nice correspondence between these young massive stars and molecular clouds,” Wong said. “That’s not entirely surprising, but it’s reassuring. We assume that these stars have to form in molecular clouds, and it tells us that the molecular clouds do hang around long enough for us to see them associated with these massive young stars.”

Wong hopes to continue to study the relationship between molecular clouds and star formation in greater detail. If researchers can determine the relative ages of young stars, they can correlate these against molecular clouds to figure out which clouds have star formation, how long the clouds live and what eventually leads to their destruction. They also plan to use a newly constructed array of telescopes in Chile to see the cloud environment in higher resolution, pinpointing exactly where inside the molecular cloud star formation will occur.

“This study provides us with our most detailed view of an entire population of clouds in another galaxy,” Wong said. “We can say with great confidence that these clouds are where the stars form, but we are still trying to figure out why they have the properties they do.”

The National Science Foundation and NASA supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/11/1130lmc_TonyWong.html

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>