Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALMA Early Science Result Reveals Starving Galaxies

12.01.2012
Astronomers using the partially completed ALMA observatory have found compelling evidence for how star-forming galaxies evolve into 'red and dead' elliptical galaxies, catching a large group of galaxies right in the middle of this change.

For years, astronomers have been developing a picture of galaxy evolution in which mergers between spiral galaxies could explain why nearby large elliptical galaxies have so few young stars. The theoretical picture is chaotic and violent: The merging galaxies knock gas and dust into clumps of rapid star formation, called starbursts, and down into the maws of the supermassive black hole growing in the merger's core. As more and more matter heaves onto the black hole, powerful jets erupt, and the region around the black hole glows brilliantly as a quasar. The jets blowing out of the merger eventually plow out the galaxy's potential star-forming gas, ending the starbursts.


An artist's concept of an active supermassive black hole and its jet, with outflow of star-forming gases. Credit: Wolfgang Steffen, Cosmovision; Marscher et al., NRAO/AUI/NSF

Until now, astronomers had never spotted enough mergers at this critical, jet-plowing stage to definitively link jet-driven outflows to the cessation of starburst activity. During its Early Science observations in late 2011, however, ALMA became the first telescope to confirm nearly two dozen galaxies in this brief stage of galaxy evolution.

What did ALMA actually see? "Despite ALMA's great sensitiviy to detecting starbursts, we saw nothing, or next to nothing - which is exactly what we hoped it would see," said lead investigator Dr. Carol Lonsdale of the North American ALMA Science Center at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Lonsdale presented the findings at the American Astronomical Society's meeting in Austin, Texas on behalf of an international team of astronomers.

For these observations, ALMA was tuned to look for dust warmed by active star-forming regions. However, half of Lonsdale's two dozen galaxies didn't show up at all in ALMA's observations, and the other half were extremely dim, indicating that there was very little of the tell-tale dust present.

"ALMA's results reveal to us that there is little-to-no starbursting going on in these young, active galaxies. The galaxy evolution model says this is thanks to their central black holes whose jets are starving them of star-forming gas," Lonsdale said. "On its first run out of the gate, ALMA confirmed a critical phase in the timeline of galaxy evolution."

Once their star-forming gas has been blown away, merging galaxies will be unable to make new stars. As the last generation of massive and brilliant, but short-lived, blue stars dies out, the long-lived, lower mass, redder stars come to dominate the merger's star population, giving the gas-starved galaxy an overall reddish hue over time.

A New Method for Finding Candidate Starving Galaxies

To support this gas-starvation theory, astronomers needed to see it at work in lots of merging galaxies with high power jets. The place to observe enough of them is among the quasars, active galaxies found in the Universe's past, several billion light-years away.

Lonsdale said, "The missing phase had to be among quasars that could be seen brightly in infrared and radio wavelengths -- mergers young enough to have their cores still swaddled in infrared-bright dust, but old enough that their black holes were well fed and producing jets observable in the radio."

Their selective hunt for these specific quasars started with NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft, which has hundreds of millions of objects in its all-sky, infrared survey of the Universe. Lonsdale led WISE's quasar survey team that picked out the brightest, reddest objects this infrared telescope had mapped.

The team then compared its selections with NRAO's VLA Sky Survey of 1.8 million radio objects and chose the overlapping results as the most suitable targets for their search for starburst activities with ALMA. Observing at longer infrared wavelengths than WISE, ALMA enabled Lonsdale's team to discriminate between dust warmed by starburst activity and dust heated by material falling onto the central black hole.

ALMA has 26 more WISE quasars to probe before Lonsdale and her international team publish their results later this year. Meanwhile, she and her team will observe these galaxies, and over a hundred more, with NRAO's newly upgraded Karl G. Jansky Very Large Array (VLA).

"ALMA revealed to us this rare stage of galaxy starvation, and now we want to use the VLA to focus on delineating the outflows that robbed these galaxies of their fuel," Lonsdale said. "Together, the two most sensitive radio telescope arrays in the world will help us truly understand the fate of spiral galaxies like our own Milky Way."

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Tania Burchell | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>