Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A transistor for light

25.04.2014

A high-performance ‘photonic transistor’ that switches light signals instead of electronic signals could revolutionize optical signal processing                                    

Electronic transistors, which act as miniature switches for controlling the flow of electrical current, underpin modern-day microelectronics and computers. State-of-the-art microprocessor chips contain several billion transistors that switch signals flowing in electrical wires and interconnects. With increasing data-processing speeds and shrinking chip sizes, however, wires and interconnects waste considerable energy as heat.

One alternative is to replace electrical interconnects with energy-efficient optical interconnects that carry data using light signals. However, a practical analogue of the transistor for optical interconnects does not yet exist. Hence, Vivek Krishnamurthy from the A*STAR Data Storage Institute and co-workers in Singapore and the United States are developing a practical ‘photonic transistor’ for optical interconnects that can control light signals in a similar manner to electronic transistors.

The researchers’ latest photonic transistor design is based on prevalent semiconductor technology and offers attractive attributes of high switching gain, low switching power and high operating speed.

Importantly, the research team’s design enables a switching gain of greater or equal to 2, which means the output signal is more than double the strength of the input signal. Hence, the transistor can be cascaded: the output signal from one photonic transistor is sufficiently strong so that it can be split to feed several others. Known as ‘fan-out’, this functionality means the design can become a building block to be scaled up to form larger circuits with many such switching elements connected together for all-optical processing on an optical interconnect platform for data- and telecommunications. Furthermore, Krishnamurthy says that the design consumes 10–20 times less power than the conventional all-optical switching technologies and can operate at very fast speeds.

The team’s design consists of a circuit of coupled silicon waveguides that guide infrared light with a wavelength of 1.5 micrometers. Some of the waveguides feature an optically active material, such as an indium gallium arsenide semiconductor, that can amplify or absorb signal light depending on whether or not it is optically excited. During operation, the intensity of a short-wavelength routing beam is used to control the strength of an output beam by altering the amount of absorption and gain in the circuit.

The researchers are now working to experimentally realize their optical transistor. “We are realizing it on a silicon chip so that it will be compatible with current microelectronic industry standards to enable commercial deployment,” explains Krishnamurthy. “Once we experimentally verify the prototype, we could further integrate it into large-scale optical switching systems for optical interconnects.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute 

Journal information

Krishnamurthy. V., Chen. Y. & Ho S.-T. Photonic transistor design principles for switching gain >=2. Journal of Lightwave Technology 31, 2086–2098 (2013).

A*STAR Research | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: A*STAR Electronic Photonic Singapore Storage circuit energy indium processing signals technologies wavelength

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>