Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A transistor for light


A high-performance ‘photonic transistor’ that switches light signals instead of electronic signals could revolutionize optical signal processing                                    

Electronic transistors, which act as miniature switches for controlling the flow of electrical current, underpin modern-day microelectronics and computers. State-of-the-art microprocessor chips contain several billion transistors that switch signals flowing in electrical wires and interconnects. With increasing data-processing speeds and shrinking chip sizes, however, wires and interconnects waste considerable energy as heat.

One alternative is to replace electrical interconnects with energy-efficient optical interconnects that carry data using light signals. However, a practical analogue of the transistor for optical interconnects does not yet exist. Hence, Vivek Krishnamurthy from the A*STAR Data Storage Institute and co-workers in Singapore and the United States are developing a practical ‘photonic transistor’ for optical interconnects that can control light signals in a similar manner to electronic transistors.

The researchers’ latest photonic transistor design is based on prevalent semiconductor technology and offers attractive attributes of high switching gain, low switching power and high operating speed.

Importantly, the research team’s design enables a switching gain of greater or equal to 2, which means the output signal is more than double the strength of the input signal. Hence, the transistor can be cascaded: the output signal from one photonic transistor is sufficiently strong so that it can be split to feed several others. Known as ‘fan-out’, this functionality means the design can become a building block to be scaled up to form larger circuits with many such switching elements connected together for all-optical processing on an optical interconnect platform for data- and telecommunications. Furthermore, Krishnamurthy says that the design consumes 10–20 times less power than the conventional all-optical switching technologies and can operate at very fast speeds.

The team’s design consists of a circuit of coupled silicon waveguides that guide infrared light with a wavelength of 1.5 micrometers. Some of the waveguides feature an optically active material, such as an indium gallium arsenide semiconductor, that can amplify or absorb signal light depending on whether or not it is optically excited. During operation, the intensity of a short-wavelength routing beam is used to control the strength of an output beam by altering the amount of absorption and gain in the circuit.

The researchers are now working to experimentally realize their optical transistor. “We are realizing it on a silicon chip so that it will be compatible with current microelectronic industry standards to enable commercial deployment,” explains Krishnamurthy. “Once we experimentally verify the prototype, we could further integrate it into large-scale optical switching systems for optical interconnects.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute 

Journal information

Krishnamurthy. V., Chen. Y. & Ho S.-T. Photonic transistor design principles for switching gain >=2. Journal of Lightwave Technology 31, 2086–2098 (2013).

A*STAR Research | Research SEA News
Further information:

Further reports about: A*STAR Electronic Photonic Singapore Storage circuit energy indium processing signals technologies wavelength

More articles from Physics and Astronomy:

nachricht Laser-wielding physicists seize control of atoms' behavior
06.10.2015 | University of Chicago

nachricht Observing the Unobservable: Researchers Measure Electron Orbitals of Molecules in 3D
05.10.2015 | Karl-Franzens-Universität Graz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>