Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A swinging molecule of light

05.10.2015

A team of researchers of the Cluster of Excellence “Nanosystems Initiative Munich” (NIM) at the Institute of Physics at Augsburg University and the Walter Schottky Institute at TU Munich successfully used nanomechanical sound waves to control a ‘molecule of light’ formed by two neighboring nanophotonic resonators. In their recent publication in Nature Communications the team led by NIM-Professor Hubert Krenner showed that the vibrating sound wave switches on and off the bond of their photonic molecule at unprecedented speeds.

For their experiments NIM-graduate student Stephan Kapfinger and his supervisor Hubert Krenner at the chair of Experimental Physics I (Prof. Achim Wixforth) at Augsburg University used nanometer-thin membranes of semiconducting material into which they drilled a large periodic array of tiny holes using cleanroom nanofabrication.


The acoustic nanoquake switches on the bond between the two nanoresonators of the photonic molecule. Then single photons jump back and forth as indicated by the red arrows.

© H. Krenner

In such a structure, a ‘photonic crystal’, light of well-defined energy (or color) can be trapped inside a region where three holes are skipped, thus forming a tiny ‘defect’ and acting as a nanocavity. Together with the group of Dr. Michael Kaniber and Prof. Jonathan Finley at TUM, they designed and fabricated a structure of two adjacent nanocavities, in which photons, single quanta of light, can oscillate back and forth.

“In our photonic molecule, photons behave just like electrons, which create a chemical bond in a hydrogen molecule. While the two hydrogen atoms forming an H2 molecule are totally identical by nature, the two artificial, man-made nanophotonic cavities usually are not,” Stephan Kapfinger explains. Until now, these tiny nanoscale imperfections have hampered the realization of coupled photonic elements or even larger scale photonic circuits.

The Augsburg research team used a smart trick to solve this pressing problem: they designed and employed a tiny sound wave, a nanometer earthquake on a chip, such that it compresses one of the nanocavities and simultaneously stretches the other.

This way, they are able to overcome the tiny fabrication related imperfections and make the two nanocavities identical for a very short snatch. Moreover, this happens also at a precisely defined time during the cycle of the sound wave, thus providing total control over the coupling.

Stephan Kapfinger is really enthusiastic on the success of his experiment: “It was fascinating to see that the two nanocavities don’t emit at the same color as one would naively expect. In fact they “repel” each other and the difference is simply the bond strength of the photonic molecule! Many scientists have tried hard to measure this effect but with little success.”

Hubert Krenner notes: “Our hallmark experiment not only demonstrates scaling and control at unprecedented speed. It also shows that nanomechanical waves can be efficiently converted to optical signals. This is quantum-mechanical control in the truest sense of the word.” The pioneering work and longstanding expertise of the Augsburg group on the application of surface acoustic waves (SAW) led to numerous important results and application. These cover the entire spectrum of the very active field of nanoscience and attracted large attraction worldwide. “We are very happy, that surface acoustic waves, our special tool for which we are famous here in Augsburg, led to another outstanding result in the field of nanophotonics,” Achim Wixforth proudly adds.

The studied photonic crystal devices are highly attractive because they can be scaled to large integrated circuits for light even in the quantum regime. Based on their groundbreaking experiments, the NIM research team expects that this system can now finally be extended to an optical quantum computer. Shaking and rattling them using well defined nanoquakes will be the clock of the quantum processor.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) via the Emmy Noether Programme (KR3790/2-1) and Sonderforschungsbereich SFB 631, and by the Excellence Initiative via the Cluster of Excellence Nanosystems Initiative Munich (NIM).

Reference:

Stephan Kapfinger, Thorsten Reichert, Stefan Lichtmannecker, Kai Müller, Jonathan J. Finley, Achim Wixforth, Michael Kaniber and Hubert J. Krenner
Dynamic acousto-optic control of a strongly coupled photonic molecule
Nature Communications 6, 8540 (2015), doi:10.1038/ncomms9540
Link: http://dx.doi.org/10.1038/ncomms9540

Contact:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9540
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>