Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A swinging molecule of light

05.10.2015

A team of researchers of the Cluster of Excellence “Nanosystems Initiative Munich” (NIM) at the Institute of Physics at Augsburg University and the Walter Schottky Institute at TU Munich successfully used nanomechanical sound waves to control a ‘molecule of light’ formed by two neighboring nanophotonic resonators. In their recent publication in Nature Communications the team led by NIM-Professor Hubert Krenner showed that the vibrating sound wave switches on and off the bond of their photonic molecule at unprecedented speeds.

For their experiments NIM-graduate student Stephan Kapfinger and his supervisor Hubert Krenner at the chair of Experimental Physics I (Prof. Achim Wixforth) at Augsburg University used nanometer-thin membranes of semiconducting material into which they drilled a large periodic array of tiny holes using cleanroom nanofabrication.


The acoustic nanoquake switches on the bond between the two nanoresonators of the photonic molecule. Then single photons jump back and forth as indicated by the red arrows.

© H. Krenner

In such a structure, a ‘photonic crystal’, light of well-defined energy (or color) can be trapped inside a region where three holes are skipped, thus forming a tiny ‘defect’ and acting as a nanocavity. Together with the group of Dr. Michael Kaniber and Prof. Jonathan Finley at TUM, they designed and fabricated a structure of two adjacent nanocavities, in which photons, single quanta of light, can oscillate back and forth.

“In our photonic molecule, photons behave just like electrons, which create a chemical bond in a hydrogen molecule. While the two hydrogen atoms forming an H2 molecule are totally identical by nature, the two artificial, man-made nanophotonic cavities usually are not,” Stephan Kapfinger explains. Until now, these tiny nanoscale imperfections have hampered the realization of coupled photonic elements or even larger scale photonic circuits.

The Augsburg research team used a smart trick to solve this pressing problem: they designed and employed a tiny sound wave, a nanometer earthquake on a chip, such that it compresses one of the nanocavities and simultaneously stretches the other.

This way, they are able to overcome the tiny fabrication related imperfections and make the two nanocavities identical for a very short snatch. Moreover, this happens also at a precisely defined time during the cycle of the sound wave, thus providing total control over the coupling.

Stephan Kapfinger is really enthusiastic on the success of his experiment: “It was fascinating to see that the two nanocavities don’t emit at the same color as one would naively expect. In fact they “repel” each other and the difference is simply the bond strength of the photonic molecule! Many scientists have tried hard to measure this effect but with little success.”

Hubert Krenner notes: “Our hallmark experiment not only demonstrates scaling and control at unprecedented speed. It also shows that nanomechanical waves can be efficiently converted to optical signals. This is quantum-mechanical control in the truest sense of the word.” The pioneering work and longstanding expertise of the Augsburg group on the application of surface acoustic waves (SAW) led to numerous important results and application. These cover the entire spectrum of the very active field of nanoscience and attracted large attraction worldwide. “We are very happy, that surface acoustic waves, our special tool for which we are famous here in Augsburg, led to another outstanding result in the field of nanophotonics,” Achim Wixforth proudly adds.

The studied photonic crystal devices are highly attractive because they can be scaled to large integrated circuits for light even in the quantum regime. Based on their groundbreaking experiments, the NIM research team expects that this system can now finally be extended to an optical quantum computer. Shaking and rattling them using well defined nanoquakes will be the clock of the quantum processor.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) via the Emmy Noether Programme (KR3790/2-1) and Sonderforschungsbereich SFB 631, and by the Excellence Initiative via the Cluster of Excellence Nanosystems Initiative Munich (NIM).

Reference:

Stephan Kapfinger, Thorsten Reichert, Stefan Lichtmannecker, Kai Müller, Jonathan J. Finley, Achim Wixforth, Michael Kaniber and Hubert J. Krenner
Dynamic acousto-optic control of a strongly coupled photonic molecule
Nature Communications 6, 8540 (2015), doi:10.1038/ncomms9540
Link: http://dx.doi.org/10.1038/ncomms9540

Contact:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9540
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>