Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A swinging molecule of light

05.10.2015

A team of researchers of the Cluster of Excellence “Nanosystems Initiative Munich” (NIM) at the Institute of Physics at Augsburg University and the Walter Schottky Institute at TU Munich successfully used nanomechanical sound waves to control a ‘molecule of light’ formed by two neighboring nanophotonic resonators. In their recent publication in Nature Communications the team led by NIM-Professor Hubert Krenner showed that the vibrating sound wave switches on and off the bond of their photonic molecule at unprecedented speeds.

For their experiments NIM-graduate student Stephan Kapfinger and his supervisor Hubert Krenner at the chair of Experimental Physics I (Prof. Achim Wixforth) at Augsburg University used nanometer-thin membranes of semiconducting material into which they drilled a large periodic array of tiny holes using cleanroom nanofabrication.


The acoustic nanoquake switches on the bond between the two nanoresonators of the photonic molecule. Then single photons jump back and forth as indicated by the red arrows.

© H. Krenner

In such a structure, a ‘photonic crystal’, light of well-defined energy (or color) can be trapped inside a region where three holes are skipped, thus forming a tiny ‘defect’ and acting as a nanocavity. Together with the group of Dr. Michael Kaniber and Prof. Jonathan Finley at TUM, they designed and fabricated a structure of two adjacent nanocavities, in which photons, single quanta of light, can oscillate back and forth.

“In our photonic molecule, photons behave just like electrons, which create a chemical bond in a hydrogen molecule. While the two hydrogen atoms forming an H2 molecule are totally identical by nature, the two artificial, man-made nanophotonic cavities usually are not,” Stephan Kapfinger explains. Until now, these tiny nanoscale imperfections have hampered the realization of coupled photonic elements or even larger scale photonic circuits.

The Augsburg research team used a smart trick to solve this pressing problem: they designed and employed a tiny sound wave, a nanometer earthquake on a chip, such that it compresses one of the nanocavities and simultaneously stretches the other.

This way, they are able to overcome the tiny fabrication related imperfections and make the two nanocavities identical for a very short snatch. Moreover, this happens also at a precisely defined time during the cycle of the sound wave, thus providing total control over the coupling.

Stephan Kapfinger is really enthusiastic on the success of his experiment: “It was fascinating to see that the two nanocavities don’t emit at the same color as one would naively expect. In fact they “repel” each other and the difference is simply the bond strength of the photonic molecule! Many scientists have tried hard to measure this effect but with little success.”

Hubert Krenner notes: “Our hallmark experiment not only demonstrates scaling and control at unprecedented speed. It also shows that nanomechanical waves can be efficiently converted to optical signals. This is quantum-mechanical control in the truest sense of the word.” The pioneering work and longstanding expertise of the Augsburg group on the application of surface acoustic waves (SAW) led to numerous important results and application. These cover the entire spectrum of the very active field of nanoscience and attracted large attraction worldwide. “We are very happy, that surface acoustic waves, our special tool for which we are famous here in Augsburg, led to another outstanding result in the field of nanophotonics,” Achim Wixforth proudly adds.

The studied photonic crystal devices are highly attractive because they can be scaled to large integrated circuits for light even in the quantum regime. Based on their groundbreaking experiments, the NIM research team expects that this system can now finally be extended to an optical quantum computer. Shaking and rattling them using well defined nanoquakes will be the clock of the quantum processor.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) via the Emmy Noether Programme (KR3790/2-1) and Sonderforschungsbereich SFB 631, and by the Excellence Initiative via the Cluster of Excellence Nanosystems Initiative Munich (NIM).

Reference:

Stephan Kapfinger, Thorsten Reichert, Stefan Lichtmannecker, Kai Müller, Jonathan J. Finley, Achim Wixforth, Michael Kaniber and Hubert J. Krenner
Dynamic acousto-optic control of a strongly coupled photonic molecule
Nature Communications 6, 8540 (2015), doi:10.1038/ncomms9540
Link: http://dx.doi.org/10.1038/ncomms9540

Contact:

Prof. Hubert Krenner – hubert.krenner@physik.uni-augsburg.de
Prof. Achim Wixforth – achim.wixforth@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9540
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>