Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on understanding plasma confinement

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

To achieve nuclear fusion for practical energy production, scientists often use magnetic fields to confine plasma. This creates a magnetic (or more precisely "magneto-hydrodynamic") fluid in which plasma is tied to magnetic field lines, and where regions of plasma can be isolated and heated to very high temperatures—typically 10 times hotter than the core of the sun!

At these temperatures the plasma is nearly superconducting, and the magnetic field becomes tightly linked to the plasma, able to provide the strong force needed to hold in the hot fusion core. The overall plasma and magnetic field structure becomes akin to that of an onion, where magnetic field lines describe surfaces like the layers in the onion. While heat can be transported readily within the layers, conduction between layers is far more limited, making the core much hotter than the edge.

Yet, even at these extreme temperatures, plasmas still have some electrical resistance and the magnetic field structure can slowly tear apart under certain conditions. Typically this happens within fractions of a second, and can lead to the formation of "magnetic islands", structures which connect the hot plasma core to cooler layers further out. Plasma follows field lines about these magnetic islands, bleeding energy from the core, lowering its temperature, and reducing fusion power production.

Recent experiments in the DIII-D tokamak—a toroidally shaped magnetic confinement device located in San Diego—have shown scientists how spinning the plasma can impede the formation of these magnetic islands.

"Plasma rotation creates a variation in the flow of plasma between magnetic surfaces, very similar to the wind shear that pilots experience," said Dr. Richard Buttery, who led these experiments.

This work shows that naturally occurring rapid rotation in the core of the tokamak plasma creates a stress across surfaces further out that prevents the formation of magnetic islands. The effect was confirmed by applying additional magnetic fields to brake the plasma motion. As the braking increases and plasma rotation slows, the stabilizing effect of the sheared flow is reduced and a magnetic island spontaneously appears. The magnetic island is born rotating, confirming that it is a natural instability of the plasma, rather than being directly driven by the static braking field.

These effects highlight an interesting and curious physics effect: creating flow shear (which might be seen as a source of energy causing islands to appear), strengthens a magnetic fluid's resilience to tearing, enabling it to support higher pressures, and so a hotter and higher performing fusion core. Thus, by applying torque on the plasma to spin it faster while minimizing stray magnetic fields that brake plasma rotation, tokamak fusion performance can be raised.

Abstract:

JI2.00006 Tearing Under Stress--The Collusion of 3D Fields and Resistivity in Low Torque H-modes
Session JI2: 3D Equilibrium, Stability and Control
Ballroom BD, Tuesday, November 15, 2011, 4:30PM:00PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>