Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on understanding plasma confinement

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

To achieve nuclear fusion for practical energy production, scientists often use magnetic fields to confine plasma. This creates a magnetic (or more precisely "magneto-hydrodynamic") fluid in which plasma is tied to magnetic field lines, and where regions of plasma can be isolated and heated to very high temperatures—typically 10 times hotter than the core of the sun!

At these temperatures the plasma is nearly superconducting, and the magnetic field becomes tightly linked to the plasma, able to provide the strong force needed to hold in the hot fusion core. The overall plasma and magnetic field structure becomes akin to that of an onion, where magnetic field lines describe surfaces like the layers in the onion. While heat can be transported readily within the layers, conduction between layers is far more limited, making the core much hotter than the edge.

Yet, even at these extreme temperatures, plasmas still have some electrical resistance and the magnetic field structure can slowly tear apart under certain conditions. Typically this happens within fractions of a second, and can lead to the formation of "magnetic islands", structures which connect the hot plasma core to cooler layers further out. Plasma follows field lines about these magnetic islands, bleeding energy from the core, lowering its temperature, and reducing fusion power production.

Recent experiments in the DIII-D tokamak—a toroidally shaped magnetic confinement device located in San Diego—have shown scientists how spinning the plasma can impede the formation of these magnetic islands.

"Plasma rotation creates a variation in the flow of plasma between magnetic surfaces, very similar to the wind shear that pilots experience," said Dr. Richard Buttery, who led these experiments.

This work shows that naturally occurring rapid rotation in the core of the tokamak plasma creates a stress across surfaces further out that prevents the formation of magnetic islands. The effect was confirmed by applying additional magnetic fields to brake the plasma motion. As the braking increases and plasma rotation slows, the stabilizing effect of the sheared flow is reduced and a magnetic island spontaneously appears. The magnetic island is born rotating, confirming that it is a natural instability of the plasma, rather than being directly driven by the static braking field.

These effects highlight an interesting and curious physics effect: creating flow shear (which might be seen as a source of energy causing islands to appear), strengthens a magnetic fluid's resilience to tearing, enabling it to support higher pressures, and so a hotter and higher performing fusion core. Thus, by applying torque on the plasma to spin it faster while minimizing stray magnetic fields that brake plasma rotation, tokamak fusion performance can be raised.

Abstract:

JI2.00006 Tearing Under Stress--The Collusion of 3D Fields and Resistivity in Low Torque H-modes
Session JI2: 3D Equilibrium, Stability and Control
Ballroom BD, Tuesday, November 15, 2011, 4:30PM:00PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>