Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A roll of the dice

10.07.2012
Quantum mechanics researchers show that nature is unpredictable

Many of the predictions we make in everyday life are vague, and we often get them wrong because we have incomplete information, such as when we predict the weather.

But in quantum mechanics, even if all the information is available, the outcomes of certain experiments generally can't be predicted perfectly beforehand.

This inability to accurately predict the results of experiments in quantum physics has been the subject of a long debate, going back to Einstein and co-workers, about whether quantum mechanics is the best way to predict outcomes.

Researchers from the University of Calgary's Institute for Quantum Information Science along with researchers from the Perimeter Institute in Waterloo and the Eidgenössische Technische Hochschule (ETH) in Zürich/Switzerland have published a paper in Physics Review Letters that suggests quantum theory is close to optimal in terms of its predictive power. The research in this paper looks at measurements on members of maximally entangled pairs of photons that are sent into Stern-Gerlach-type apparatus, in which each photon can take one out of two possible paths.

"In our experiment, we show that any theory in which there is significantly less randomness is destined to fail: quantum theory essentially provides the ultimate bound on how predictable the universe is," says Dr. Wolfgang Tittel, associate professor and GDC/AITFIndustrial Research Chair in Quantum Cryptography and Communicationat the University of Calgary.

Dr. Renato Renner, Professor at the ETH in Zürich adds: "In other words, not only does God 'play dice,' but his dice are fair."

Randomness in quantum theory is one of its key features and is widely known, even outside the scientific community, says Tittel. "Its appeal is its fundamental nature and broad range of implications: knowing the precise configuration of the universe at the big bang would not be sufficient to predict its entire evolution, for example, in contrast to classical theory."

The paper: "An experimental bound on the maximum predictive power of physical theories" is by Terence E. Stuart,Joshua A. Slater, Roger Colbeck, Renato Renner and Wolfgang Tittel is available: http://prl.aps.org/abstract/PRL/v109/i2/e020402

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>