Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Material Could Act as a Nanofridge for Microchips

09.10.2008
In the past few years, the design and manufacturing of circuits at nanoscopic scale for integrated devices has become one of the frontier fields in new material science and technology.

The significant reduction achieved in these devices often is accompanied by new discoveries in how they behave precisely when the systems are of extremely small dimensions. Understanding this new physics at nanoscopic scale at the same time has enabled researchers to study the possibility of designing new materials with innovative characteristics.

One of the most crucial properties to take into account when designing chips is the thermal conductivity of the devices integrated in the chip, i.e. their capacity to remove or accumulate energy. This property is essential to control the heating of micro-sized circuits, which represents one of the current physical limitations to computing potential. Combining heat and electricity creates thermoelectric effects which would allow circuits to cool down and would increase the power of computing. Until now, no material has contained the properties needed to be efficient enough in terms of thermoelectric behaviour.

This is why obtaining materials at nanometric scale can be useful for the improvement of thermoelectric properties, since these materials can achieve a significant reduction in thermal conductivity as well as maintain a high level of electrical conductivity, which is needed to obtain high thermoelectric efficiency.

In this project, researchers of the UAB Department of Physics and the Barcelona Institute of Materials Science (ICMAB-CSIC) have worked together to develop a new material based on supernets formed with two alternative layers, one made of silicon (Si) and the other of germanium (Ge) nanocrystals (quantum dots). In comparison to previous improvements, this project proposes to place the quantum dots in an uncorrelated fashion on consecutive layers. In other words, the dots on one layer would not be vertically aligned with those of the lower layer.

This is achieved by introducing a small sub-layer of carbon between each layer of silicon and Ge nanodots, which hides the information of the quantum dots found on the lower levels. The main result of the uncorrelation between consecutive layers is the reduction in thermal conductivity, since it becomes more difficult to transport heat perpendicularly from the multilayers. Researchers were able to prove that this reduction reached a factor in excess of 2 when compared to structures with a vertical correlation of dots. This could greatly influence the design of new materials with improved thermoelectric characteristics and pave the way for the creation of nanofridges for common semiconductor devices, given that the structure is compatible with silicon technology.

Ge-based structures also could be used in high-temperature applications, such as in recovering heat generated in combustion processes and converting it to electrical energy.

A second and important aspect of this project is the theoretic study of the thermal properties this new material contains through a simple model based on the modification of the Fourier heat equation, which can predict its behaviour according to the dimensions of its characteristics. Thus with the help of results from previous studies, researchers were able to understand the theoretical foundations of thermal behaviour of this nanostructured material.

The research was coordinated by Javier Rodríguez, professor at the UAB Department of Physics, with the participation of Jaime Alvarez, Xavier Alvarez and David Jou, also from the UAB Department of Physics, as well as the collaboration of CSIC researchers Paul Lacharmoise, Alessandro Bernardi, Isabel Alonso, and ICREA researcher Alejandro Goñi. Part of the research was carried out at the Nanotechnology Lab of the MATGAS research centre located at the UAB Research Park. The research paper was recently published in Applied Physics Letters and research members are now working to develop a material with a good level of electric conductivity through controlled doping of the structure.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>