Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Material Could Act as a Nanofridge for Microchips

09.10.2008
In the past few years, the design and manufacturing of circuits at nanoscopic scale for integrated devices has become one of the frontier fields in new material science and technology.

The significant reduction achieved in these devices often is accompanied by new discoveries in how they behave precisely when the systems are of extremely small dimensions. Understanding this new physics at nanoscopic scale at the same time has enabled researchers to study the possibility of designing new materials with innovative characteristics.

One of the most crucial properties to take into account when designing chips is the thermal conductivity of the devices integrated in the chip, i.e. their capacity to remove or accumulate energy. This property is essential to control the heating of micro-sized circuits, which represents one of the current physical limitations to computing potential. Combining heat and electricity creates thermoelectric effects which would allow circuits to cool down and would increase the power of computing. Until now, no material has contained the properties needed to be efficient enough in terms of thermoelectric behaviour.

This is why obtaining materials at nanometric scale can be useful for the improvement of thermoelectric properties, since these materials can achieve a significant reduction in thermal conductivity as well as maintain a high level of electrical conductivity, which is needed to obtain high thermoelectric efficiency.

In this project, researchers of the UAB Department of Physics and the Barcelona Institute of Materials Science (ICMAB-CSIC) have worked together to develop a new material based on supernets formed with two alternative layers, one made of silicon (Si) and the other of germanium (Ge) nanocrystals (quantum dots). In comparison to previous improvements, this project proposes to place the quantum dots in an uncorrelated fashion on consecutive layers. In other words, the dots on one layer would not be vertically aligned with those of the lower layer.

This is achieved by introducing a small sub-layer of carbon between each layer of silicon and Ge nanodots, which hides the information of the quantum dots found on the lower levels. The main result of the uncorrelation between consecutive layers is the reduction in thermal conductivity, since it becomes more difficult to transport heat perpendicularly from the multilayers. Researchers were able to prove that this reduction reached a factor in excess of 2 when compared to structures with a vertical correlation of dots. This could greatly influence the design of new materials with improved thermoelectric characteristics and pave the way for the creation of nanofridges for common semiconductor devices, given that the structure is compatible with silicon technology.

Ge-based structures also could be used in high-temperature applications, such as in recovering heat generated in combustion processes and converting it to electrical energy.

A second and important aspect of this project is the theoretic study of the thermal properties this new material contains through a simple model based on the modification of the Fourier heat equation, which can predict its behaviour according to the dimensions of its characteristics. Thus with the help of results from previous studies, researchers were able to understand the theoretical foundations of thermal behaviour of this nanostructured material.

The research was coordinated by Javier Rodríguez, professor at the UAB Department of Physics, with the participation of Jaime Alvarez, Xavier Alvarez and David Jou, also from the UAB Department of Physics, as well as the collaboration of CSIC researchers Paul Lacharmoise, Alessandro Bernardi, Isabel Alonso, and ICREA researcher Alejandro Goñi. Part of the research was carried out at the Nanotechnology Lab of the MATGAS research centre located at the UAB Research Park. The research paper was recently published in Applied Physics Letters and research members are now working to develop a material with a good level of electric conductivity through controlled doping of the structure.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>