Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new mass sensor to weight atoms with an unprecedented resolution

28.10.2008
A group of researchers led by Adrian Bachtold of the CIN2 laboratory in Spain has developed an ultrasensitive mass sensor, which can measure tiny amounts of mass with atomic precision, and with an unprecedented resolution to date.

The CIN2 (Research Center for Nanoscience and Nanotechnology), is a joint centre belonging to the Spanish National Council for Scientific Research (CSIC) and the Nanotechnology Catalonian Institute (ICN).

The device is based on a carbon nanotube of 1 nanometer diameter which is clamped at both ends to two electrodes. It works as an electromechanical resonator characterized by a mechanical resonance frequency as if it was a string on a guitar. When atoms are directed towards the nanotube, they hit and stick to its surface. This increases the nanotube mass, thereby reducing its resonance frequency: this slowing of the vibration is used to quantify the mass of the atoms.

At room temperature, the nanotube resonator has a resolution of 25 zeptograms (zg) but cooling the nanotube down to 5 Kelvin (268.15 degrees C below zero) the resolution improves to 1.4 zeptograms. A zeptogram equals 10 -21 grams or, which is the same, a thousandth part of one millionth of one millionth of one millionth of a gram.

A sensor of this resolution would allow the detection of tiny amounts of mass such as the mass of proteins or other molecules with atomic resolution. Also, it could be used to monitor nuclear reactions in individual atoms, or biological molecules in chemical reactions.

The researchers tested the device by measuring the mass of evaporated chromium atoms, and the performance, as explained in an article published in the journal Nanoletters, is exceptional. The other members of the team are Benjamin Lassagne and Daniel Garcia, both of CIN2, and Albert Aguasca, from the Universitat Politècnica de Catalunya.

A remaining challenge

One of the challenges of nanotechnology and nanomechanics is having a mass spectrometer working at subatomic level. The maximum resolution had been achieved with some silicon resonators (with a resolution of about 7 to zeptograms temperature of 4.2 Kelvin). Now, the work of Bachtold and co-workers has substantially increased that resolution through the use of carbon nanotubes.

The mass of a nanotube is very low, barely a few atograms (which is a millionth of one millionth of a microgram, or 10 -18 g), so that any tiny amount of added mass will be detected. In addition, the nanotubes are mechanically ultrarigid, which makes them excellent candidates to be used as mechanical resonators.

Now, the team of Bachtold is improving the measurement set up and hopes to achieve in the near future the resolution of 0.001 zg, the mass of one nucleus. The researchers will then place proteins on the nanotube and monitor the change of the mass during chemical reactions (when a hydrogen atom is released from the protein, for instance).

Nanotechnology has been advancing rapidly in the few last years. Even so, there remain many challenges ahead, and one of them is a mass spectrometer to allow work at that level, with small biological molecules or atoms.

The development of the CIN2 team has coincided in time with others of similar characteristics, both from the U.S.A. One, at the Technical University of California (Caltech) and the other at the University of California (Berkeley). Both groups have developed mass sensors based on carbon nanotubes, with minor differences between the methods used. The fact was recently highlighted in the journal Nature Nanotechnology.

Mercé Fernández | alfa
Further information:
http://www.csic.es

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>