Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A crack in the case for supersolids

22.06.2010
Reports of supersolid helium may have been premature

New experiments are casting doubt on previously reported observations of supersolid helium. In a paper appearing in the current issue of Physical Review Letters (PRL), John Reppy (Cornell University) presents research suggesting that prior experiments that seemed to show signs of supersolidity were in fact the result of the plastic deformation of normal helium.

Physicists have long known that helium can become a superfluid at low temperatures, allowing it to flow completely friction free, spontaneously climb walls, and exhibit other counterintuitive characteristics. Based on quantum mechanical calculations dating back to the 1970's, some physicists predicted similar effects in solid materials. In particular, they expected ultracold solid helium could become a mixture of normal solid and supersolid forms.

It wasn't until 2004 that physicists were able to devise a way to look for supersolid behavior in helium. They filled a hollow torsion pendulum (a type of pendulum that rotates rather than swinging back and forth) with helium, then measured the rate that it twisted as the helium was cooled. Because the periodic twisting rate depends in part on the amount of normal helium in the pendulum cavity, they expected that the period would change if some of the helium became supersolid. When researchers found the period change they were expecting, many physicists declared the hunt for supersolid helium had finally come to an end.

According to Reppy's experiments, which are the subject of a Viewpoint by John Beamish (University of Alberta) in the latest edition of APS Physics (http://physics.aps.org), the period change may have had nothing to do with supersolids at all. Instead, it's possible that the normal helium was deforming as the pendulum twisted. The conclusion is the result of a new pendulum design and methods to control the structure of the solid helium inside, which should allow physicists to tease out the effects of supersolid helium from the effects of deformations.

It's not yet clear that observations of supersolid helium were in error. Even if that's the case, the possibility that deformations are responsible for the period change in a helium-filled pendulum is nearly as intriguing to physicists as supersolid helium because it may result from a poorly understood phenomenon known as quantum plasticity. Only further research will determine whether supersolidity or quantum plasticity is responsible for the odd behavior of super-cold, solid helium.

About APS Physics:

APS Physics (http://physics.aps.org) publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

James Riordon | EurekAlert!
Further information:
http://physics.aps.org
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>