Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A comet’s tale at Diamond

A new picture of the composition of comets is emerging with the help of 21st century technology available at Diamond, the UK’s national synchrotron light source, in Oxfordshire.

We already know that comets played a significant role in ensuring that conditions were right for life on Earth. Most of the icy, small planetary bodies that otherwise became comets went into forming the gas giant planets in the outer Solar System but some were ejected from the vicinity of the largest planets.

Of these, a fraction ended up in the inner Solar System bringing water and biogenic elements of interest to Earth. Without this cometary transport, life on Earth may never have had a chance to start.

Now, scientists from the Space Research Centre at the University of Leicester have, for the first time, brought samples of the Comet Wild-2 to Diamond. In doing so, using Diamond’s microfocus spectroscopy capabilities – bright and powerful X-rays with a beam size equivalent to one 25th of a human hair – they have discovered that the old model of comets as dusty iceballs is not the whole picture.

Dr John Bridges, from the Space Research Centre, explains the results, ‘Comets are starting to look a lot more complicated than the old dusty iceball idea. For one thing Wild-2 contains material, like chromium oxides, from the hot inner Solar System – so how did that material get mixed in with a comet which has spent most of its life beyond Neptune? It suggests that there has been major mixing of material from inner and outer parts of the Solar System in its earliest stages.

‘At Diamond, we have also been finding X-ray signatures of iron oxides. These are important because they show that on the Wild-2 nucleus there could have been small trickles of water that deposited these minerals. Similar grains are found in carbonaceous chondrite meteorites. This might mean that there have been localised heating events perhaps caused by impact on the Wild-2 nucleus that melted some of its ice.’

Their samples, which were born in the Kuiper Belt near Neptune, were collected by the Stardust space mission, which involved a seven year long, five billion km, journey. They then travelled by more conventional means (Fedex) from the US to the Space Research Centre. The Stardust mission was conceived so that comets could be studied directly as this will help researchers to find out more about the Solar System’s water and the dust that escaped planetary formation.

Dr Bridges adds, ‘It’s now becoming clear that not all comets are the same. For instance, Wild-2 may have more similarities to some asteroids and primitive meteorites than comets from the Oort Cloud, which extends to the outer limits of our Solar System and which are infrequent visitors to Earth.’

Diamond is capable of studying a huge variety of samples from every discipline of scientific research. Dr Fred Mosselmans, Principal Beamline Scientist for Diamond's microfocus spectroscopy beamline, says, ‘In the past year, example of samples studied have included wood chips from the Mary Rose warship, paint pigment samples from Tate Britain, brain tissue to further our understanding of Parkinson's disease, metal on metal hip replacements, stainless steel corrosion and the comet grains from the Stardust mission – a reflection of the huge breadth of research undertaken at Diamond.’

The University of Leicester team plan to study more cometary tracks at Diamond in the months to come, from which they will be able to establish accurate comparisons with meteorites and determine the processes – such as liquid water in the nucleus and mixing in material from the hot inner Solar System – that have gone towards forming comets.

Researchers can contact scientists to discuss their experiment ideas and then put a proposal together for beamtime. An international scientific review panel considers all proposals before allocating time on one of our beamlines. Diamond currently has 11 operating beamlines, with a further 11 being added between now and 2012.

Diamond is supporting the BA Festival of Science which will take place in Liverpool from 6-11 September. The Festival brings over 350 of the UK’s top scientists, engineers and commentators to discuss the latest developments in science with the public. In addition to talks and debates at the University of Liverpool, there will be a host of events happening throughout the city as part of the European Capital of Culture celebrations.

For more information about the BA Festival of Science, including an online programme, visit

This year’s BA Festival of Science is organised by the BA (British Association for the Advancement of Science) in partnership with the University of Liverpool. It is supported by the Department for Innovation, Universities & Skills, the Liverpool Culture Company and the Northwest Regional Development Agency.

Lisa Hendry | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>