Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A comet’s tale at Diamond

08.09.2008
A new picture of the composition of comets is emerging with the help of 21st century technology available at Diamond, the UK’s national synchrotron light source, in Oxfordshire.

We already know that comets played a significant role in ensuring that conditions were right for life on Earth. Most of the icy, small planetary bodies that otherwise became comets went into forming the gas giant planets in the outer Solar System but some were ejected from the vicinity of the largest planets.

Of these, a fraction ended up in the inner Solar System bringing water and biogenic elements of interest to Earth. Without this cometary transport, life on Earth may never have had a chance to start.

Now, scientists from the Space Research Centre at the University of Leicester have, for the first time, brought samples of the Comet Wild-2 to Diamond. In doing so, using Diamond’s microfocus spectroscopy capabilities – bright and powerful X-rays with a beam size equivalent to one 25th of a human hair – they have discovered that the old model of comets as dusty iceballs is not the whole picture.

Dr John Bridges, from the Space Research Centre, explains the results, ‘Comets are starting to look a lot more complicated than the old dusty iceball idea. For one thing Wild-2 contains material, like chromium oxides, from the hot inner Solar System – so how did that material get mixed in with a comet which has spent most of its life beyond Neptune? It suggests that there has been major mixing of material from inner and outer parts of the Solar System in its earliest stages.

‘At Diamond, we have also been finding X-ray signatures of iron oxides. These are important because they show that on the Wild-2 nucleus there could have been small trickles of water that deposited these minerals. Similar grains are found in carbonaceous chondrite meteorites. This might mean that there have been localised heating events perhaps caused by impact on the Wild-2 nucleus that melted some of its ice.’

Their samples, which were born in the Kuiper Belt near Neptune, were collected by the Stardust space mission, which involved a seven year long, five billion km, journey. They then travelled by more conventional means (Fedex) from the US to the Space Research Centre. The Stardust mission was conceived so that comets could be studied directly as this will help researchers to find out more about the Solar System’s water and the dust that escaped planetary formation.

Dr Bridges adds, ‘It’s now becoming clear that not all comets are the same. For instance, Wild-2 may have more similarities to some asteroids and primitive meteorites than comets from the Oort Cloud, which extends to the outer limits of our Solar System and which are infrequent visitors to Earth.’

Diamond is capable of studying a huge variety of samples from every discipline of scientific research. Dr Fred Mosselmans, Principal Beamline Scientist for Diamond's microfocus spectroscopy beamline, says, ‘In the past year, example of samples studied have included wood chips from the Mary Rose warship, paint pigment samples from Tate Britain, brain tissue to further our understanding of Parkinson's disease, metal on metal hip replacements, stainless steel corrosion and the comet grains from the Stardust mission – a reflection of the huge breadth of research undertaken at Diamond.’

The University of Leicester team plan to study more cometary tracks at Diamond in the months to come, from which they will be able to establish accurate comparisons with meteorites and determine the processes – such as liquid water in the nucleus and mixing in material from the hot inner Solar System – that have gone towards forming comets.

Researchers can contact scientists to discuss their experiment ideas and then put a proposal together for beamtime. An international scientific review panel considers all proposals before allocating time on one of our beamlines. Diamond currently has 11 operating beamlines, with a further 11 being added between now and 2012.

Diamond is supporting the BA Festival of Science which will take place in Liverpool from 6-11 September. The Festival brings over 350 of the UK’s top scientists, engineers and commentators to discuss the latest developments in science with the public. In addition to talks and debates at the University of Liverpool, there will be a host of events happening throughout the city as part of the European Capital of Culture celebrations.

For more information about the BA Festival of Science, including an online programme, visit www.the-ba.net/festivalofscience.

This year’s BA Festival of Science is organised by the BA (British Association for the Advancement of Science) in partnership with the University of Liverpool. It is supported by the Department for Innovation, Universities & Skills, the Liverpool Culture Company and the Northwest Regional Development Agency.

Lisa Hendry | alfa
Further information:
http://www.diamond.ac.uk
http://stardust.jpl.nasa.gov/home/index.html
http://www.the-ba.net

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>