Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A comet’s tale at Diamond

08.09.2008
A new picture of the composition of comets is emerging with the help of 21st century technology available at Diamond, the UK’s national synchrotron light source, in Oxfordshire.

We already know that comets played a significant role in ensuring that conditions were right for life on Earth. Most of the icy, small planetary bodies that otherwise became comets went into forming the gas giant planets in the outer Solar System but some were ejected from the vicinity of the largest planets.

Of these, a fraction ended up in the inner Solar System bringing water and biogenic elements of interest to Earth. Without this cometary transport, life on Earth may never have had a chance to start.

Now, scientists from the Space Research Centre at the University of Leicester have, for the first time, brought samples of the Comet Wild-2 to Diamond. In doing so, using Diamond’s microfocus spectroscopy capabilities – bright and powerful X-rays with a beam size equivalent to one 25th of a human hair – they have discovered that the old model of comets as dusty iceballs is not the whole picture.

Dr John Bridges, from the Space Research Centre, explains the results, ‘Comets are starting to look a lot more complicated than the old dusty iceball idea. For one thing Wild-2 contains material, like chromium oxides, from the hot inner Solar System – so how did that material get mixed in with a comet which has spent most of its life beyond Neptune? It suggests that there has been major mixing of material from inner and outer parts of the Solar System in its earliest stages.

‘At Diamond, we have also been finding X-ray signatures of iron oxides. These are important because they show that on the Wild-2 nucleus there could have been small trickles of water that deposited these minerals. Similar grains are found in carbonaceous chondrite meteorites. This might mean that there have been localised heating events perhaps caused by impact on the Wild-2 nucleus that melted some of its ice.’

Their samples, which were born in the Kuiper Belt near Neptune, were collected by the Stardust space mission, which involved a seven year long, five billion km, journey. They then travelled by more conventional means (Fedex) from the US to the Space Research Centre. The Stardust mission was conceived so that comets could be studied directly as this will help researchers to find out more about the Solar System’s water and the dust that escaped planetary formation.

Dr Bridges adds, ‘It’s now becoming clear that not all comets are the same. For instance, Wild-2 may have more similarities to some asteroids and primitive meteorites than comets from the Oort Cloud, which extends to the outer limits of our Solar System and which are infrequent visitors to Earth.’

Diamond is capable of studying a huge variety of samples from every discipline of scientific research. Dr Fred Mosselmans, Principal Beamline Scientist for Diamond's microfocus spectroscopy beamline, says, ‘In the past year, example of samples studied have included wood chips from the Mary Rose warship, paint pigment samples from Tate Britain, brain tissue to further our understanding of Parkinson's disease, metal on metal hip replacements, stainless steel corrosion and the comet grains from the Stardust mission – a reflection of the huge breadth of research undertaken at Diamond.’

The University of Leicester team plan to study more cometary tracks at Diamond in the months to come, from which they will be able to establish accurate comparisons with meteorites and determine the processes – such as liquid water in the nucleus and mixing in material from the hot inner Solar System – that have gone towards forming comets.

Researchers can contact scientists to discuss their experiment ideas and then put a proposal together for beamtime. An international scientific review panel considers all proposals before allocating time on one of our beamlines. Diamond currently has 11 operating beamlines, with a further 11 being added between now and 2012.

Diamond is supporting the BA Festival of Science which will take place in Liverpool from 6-11 September. The Festival brings over 350 of the UK’s top scientists, engineers and commentators to discuss the latest developments in science with the public. In addition to talks and debates at the University of Liverpool, there will be a host of events happening throughout the city as part of the European Capital of Culture celebrations.

For more information about the BA Festival of Science, including an online programme, visit www.the-ba.net/festivalofscience.

This year’s BA Festival of Science is organised by the BA (British Association for the Advancement of Science) in partnership with the University of Liverpool. It is supported by the Department for Innovation, Universities & Skills, the Liverpool Culture Company and the Northwest Regional Development Agency.

Lisa Hendry | alfa
Further information:
http://www.diamond.ac.uk
http://stardust.jpl.nasa.gov/home/index.html
http://www.the-ba.net

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>