Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Cloudy Mystery

It's the mystery of the curiously dense cloud. And astronomers at the California Institute of Technology (Caltech) are on the case.

Near the crowded galactic center, where billowing clouds of gas and dust cloak a supermassive black hole three million times as massive as the sun—a black hole whose gravity is strong enough to grip stars that are whipping around it at thousands of kilometers per second—one particular cloud has baffled astronomers. Indeed, the cloud, dubbed G0.253+0.016, defies the rules of star formation.

This image, taken with NASA's Spitzer infrared space telescope, shows the mysterious galactic cloud, seen as the black object on the left. The galactic center is the bright spot on the right.

Credit: NASA/Spitzer/Benjamin et al., Churchwell et al.

In infrared images of the galactic center, the cloud—which is 30 light-years long—appears as a bean-shaped silhouette against a bright backdrop of dust and gas glowing in infrared light. The cloud's darkness means it is dense enough to block light.

According to conventional wisdom, clouds of gas that are this dense should clump up to create pockets of even denser material that collapse due to their own gravity and eventually form stars. One such gaseous region famed for its prodigious star formation is the Orion Nebula. And yet, although the galactic-center cloud is 25 times denser than Orion, only a few stars are being born there—and even then, they are small. In fact, the Caltech astronomers say, its star-formation rate is 45 times lower than what astronomers might expect from such a dense cloud.

"It's a very dense cloud and it doesn't form any massive stars—which is very weird," says Jens Kauffmann, a senior postdoctoral scholar at Caltech.

In a series of new observations, Kauffmann, along with Caltech postdoctoral scholar Thushara Pillai and Qizhou Zhang of the Harvard-Smithsonian Center for Astrophysics, have discovered why: not only does it lack the necessary clumps of denser gas, but the cloud itself is swirling so fast that it can't settle down to collapse into stars.

The results, which show that star formation may be more complex than previously thought and that the presence of dense gas does not automatically imply a region where such formation occurs, may help astronomers better understand the process.

The team presented their findings—which have been recently accepted for publication in the Astrophysical Journal Letters—at the 221st meeting of the American Astronomical Society in Long Beach, California.

To determine whether the cloud contained clumps of denser gas, called dense cores, the team used the Submillimeter Array (SMA), a collection of eight radio telescopes on top of Mauna Kea in Hawaii. In one possible scenario, the cloud does contain these dense cores, which are roughly 10 times denser than the rest of the cloud, but strong magnetic fields or turbulence in the cloud disturbs them, thus preventing them from turning into full-fledged stars.

However, by observing the dust mixed into the cloud's gas and measuring N2H+—an ion that can only exist in regions of high density and is therefore a marker of very dense gas—the astronomers found hardly any dense cores. "That was very surprising," Pillai says. "We expected to see a lot more dense gas."

Next, the astronomers wanted to see if the cloud is being held together by its own gravity—or if it is swirling so fast that it is on the verge of flying apart. If it is churning too fast, it can't form stars. Using the Combined Array for Research in Millimeter-wave Astronomy (CARMA)—a collection of 23 radio telescopes in eastern California run by a consortium of institutions, of which Caltech is a member—the astronomers measured the velocities of the gas in the cloud and found that it is up to 10 times faster than is normally seen in similar clouds. This particular cloud, the astronomers found, was barely held together by its own gravity. In fact, it may soon fly apart.

The CARMA data revealed yet another surprise: the cloud is full of silicon monoxide (SiO), which is only present in clouds where streaming gas collides with and smashes apart dust grains, releasing the molecule. Typically, clouds only contain a smattering of the compound. It is usually observed when gas flowing out from young stars plows back into the cloud from which the stars were born. But the extensive amount of SiO in the galactic-center cloud suggests that it may consist of two colliding clouds, whose impact sends shockwaves throughout the galactic-center cloud. "To see such shocks on such large scales is very surprising," Pillai says.

G0.253+0.016 may eventually be able to make stars, but to do so, the researchers say, it will need to settle down so that it can build dense cores, a process that could take several hundred thousand years. But during that time, the cloud will have traveled a great distance around the galactic center, and it may crash into other clouds or be yanked apart by the gravitational pull of the galactic center. In such a disruptive environment, the cloud may never give birth to stars.

The findings also further muddle another mystery of the galactic center: the presence of young star clusters. The Arches Cluster, for example, contains about 150 bright, massive, young stars, which only live for a few million years. Because that is too short an amount of time for the stars to have formed elsewhere and migrated to the galactic center, they must have formed at their current location. Astronomers thought this occurred in dense clouds like G0.253+0.016. If not there, then where do the clusters come from?

The astronomers' next step is to study similarly dense clouds around the galactic center. The team has just completed a new survey with the SMA and is continuing another with CARMA. This year, they will also use the Atacama Large Millimeter Array (ALMA) in Chile's Atacama Desert—the largest and most advanced millimeter telescope in the world—to continue their research program, which the ALMA proposal committee has rated a top priority for 2013.

The title of the Astrophysical Journal Letters paper is, "The galactic center cloud G0.253+0.016: a massive dense cloud with low star formation potential." This research was supported by the National Science Foundation.

Written by Marcus Woo
Brian Bell
(626) 395-5832

Brian Bell | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>