Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cloudy Mystery

11.01.2013
It's the mystery of the curiously dense cloud. And astronomers at the California Institute of Technology (Caltech) are on the case.

Near the crowded galactic center, where billowing clouds of gas and dust cloak a supermassive black hole three million times as massive as the sun—a black hole whose gravity is strong enough to grip stars that are whipping around it at thousands of kilometers per second—one particular cloud has baffled astronomers. Indeed, the cloud, dubbed G0.253+0.016, defies the rules of star formation.


This image, taken with NASA's Spitzer infrared space telescope, shows the mysterious galactic cloud, seen as the black object on the left. The galactic center is the bright spot on the right.



Credit: NASA/Spitzer/Benjamin et al., Churchwell et al.

In infrared images of the galactic center, the cloud—which is 30 light-years long—appears as a bean-shaped silhouette against a bright backdrop of dust and gas glowing in infrared light. The cloud's darkness means it is dense enough to block light.

According to conventional wisdom, clouds of gas that are this dense should clump up to create pockets of even denser material that collapse due to their own gravity and eventually form stars. One such gaseous region famed for its prodigious star formation is the Orion Nebula. And yet, although the galactic-center cloud is 25 times denser than Orion, only a few stars are being born there—and even then, they are small. In fact, the Caltech astronomers say, its star-formation rate is 45 times lower than what astronomers might expect from such a dense cloud.

"It's a very dense cloud and it doesn't form any massive stars—which is very weird," says Jens Kauffmann, a senior postdoctoral scholar at Caltech.

In a series of new observations, Kauffmann, along with Caltech postdoctoral scholar Thushara Pillai and Qizhou Zhang of the Harvard-Smithsonian Center for Astrophysics, have discovered why: not only does it lack the necessary clumps of denser gas, but the cloud itself is swirling so fast that it can't settle down to collapse into stars.

The results, which show that star formation may be more complex than previously thought and that the presence of dense gas does not automatically imply a region where such formation occurs, may help astronomers better understand the process.

The team presented their findings—which have been recently accepted for publication in the Astrophysical Journal Letters—at the 221st meeting of the American Astronomical Society in Long Beach, California.

To determine whether the cloud contained clumps of denser gas, called dense cores, the team used the Submillimeter Array (SMA), a collection of eight radio telescopes on top of Mauna Kea in Hawaii. In one possible scenario, the cloud does contain these dense cores, which are roughly 10 times denser than the rest of the cloud, but strong magnetic fields or turbulence in the cloud disturbs them, thus preventing them from turning into full-fledged stars.

However, by observing the dust mixed into the cloud's gas and measuring N2H+—an ion that can only exist in regions of high density and is therefore a marker of very dense gas—the astronomers found hardly any dense cores. "That was very surprising," Pillai says. "We expected to see a lot more dense gas."

Next, the astronomers wanted to see if the cloud is being held together by its own gravity—or if it is swirling so fast that it is on the verge of flying apart. If it is churning too fast, it can't form stars. Using the Combined Array for Research in Millimeter-wave Astronomy (CARMA)—a collection of 23 radio telescopes in eastern California run by a consortium of institutions, of which Caltech is a member—the astronomers measured the velocities of the gas in the cloud and found that it is up to 10 times faster than is normally seen in similar clouds. This particular cloud, the astronomers found, was barely held together by its own gravity. In fact, it may soon fly apart.

The CARMA data revealed yet another surprise: the cloud is full of silicon monoxide (SiO), which is only present in clouds where streaming gas collides with and smashes apart dust grains, releasing the molecule. Typically, clouds only contain a smattering of the compound. It is usually observed when gas flowing out from young stars plows back into the cloud from which the stars were born. But the extensive amount of SiO in the galactic-center cloud suggests that it may consist of two colliding clouds, whose impact sends shockwaves throughout the galactic-center cloud. "To see such shocks on such large scales is very surprising," Pillai says.

G0.253+0.016 may eventually be able to make stars, but to do so, the researchers say, it will need to settle down so that it can build dense cores, a process that could take several hundred thousand years. But during that time, the cloud will have traveled a great distance around the galactic center, and it may crash into other clouds or be yanked apart by the gravitational pull of the galactic center. In such a disruptive environment, the cloud may never give birth to stars.

The findings also further muddle another mystery of the galactic center: the presence of young star clusters. The Arches Cluster, for example, contains about 150 bright, massive, young stars, which only live for a few million years. Because that is too short an amount of time for the stars to have formed elsewhere and migrated to the galactic center, they must have formed at their current location. Astronomers thought this occurred in dense clouds like G0.253+0.016. If not there, then where do the clusters come from?

The astronomers' next step is to study similarly dense clouds around the galactic center. The team has just completed a new survey with the SMA and is continuing another with CARMA. This year, they will also use the Atacama Large Millimeter Array (ALMA) in Chile's Atacama Desert—the largest and most advanced millimeter telescope in the world—to continue their research program, which the ALMA proposal committee has rated a top priority for 2013.

The title of the Astrophysical Journal Letters paper is, "The galactic center cloud G0.253+0.016: a massive dense cloud with low star formation potential." This research was supported by the National Science Foundation.

Written by Marcus Woo
Contact:
Brian Bell
(626) 395-5832
mr@caltech.edu

Brian Bell | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>