Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

4 million volt milestone!

18.11.2008
STFC Daresbury Laboratory’s ALICE accelerates to 4 million volt milestone

A major milestone has been achieved in the completion of the UK’s next-generation particle accelerator, ALICE, which is set to produce an intense beam of light that will revolutionise the way in which accelerator based light source research facilities will be designed in the future.

To mark the occasion, ALICE was visited today, 13 November 2008, by His Royal Highness The Duke of Kent as part of his visit to the Daresbury Science and Innovation Campus. ALICE is based at the Science and Technology Facilities Council’s (STFC) Daresbury Laboratory and on Thursday 23 October, after more than four years of planning and construction, it achieved its first high-energy beam. This brings ALICE one step closer to its completion and to achieving its goal of energy recovery, a critical requirement for the economic viability of such future light sources.

Set to underpin the UK’s next accelerator-based light source, ALICE is a unique world-class R&D prototype whose cutting edge technology will enable advances in areas including security and medical imaging. ALICE produces terahertz radiation which can be used to significantly enhance airport security due to its ability to detect bombs and non-metallic items through clothing that would normally only be possible with a personal search, as well as providing significant potential for non-invasive medical imaging. High energy beams from ALICE will also go on to be used to influence technology for new cancer treatements in a linked project known as EMMA.

The first high-energy beam was achieved using ALICE’s photoinjector, which fired a beam of electrons into a superconducting linear accelerator, creating a particle beam with a total energy of nearly four and a half million electron volts. The photoinjector is a high-brightness electron gun capable of generating extremely short pulses of electrons, less than a hundred picoseconds in duration (one picosecond is a millionth of a millionth of a second). These pulses are fired into the first linear accelerator (known as the booster) at a rate of 81 million shots per second. The booster is maintained at a temperature of -271degrees Celsius, at which temperature it becomes superconducting and capable of sustaining very high electric and magnetic fields. This accelerated beam will eventually be used to generate pulses of infrared, ultraviolet and x-ray light, creating the ultimate stroboscopic light source capable of making real-time movies of chemical reactions at the atomic level. This capability will have a major impact in research carried out in the fields of drug development, materials science and ‘green’ technologies.

Susan Smith, Head of the Accelerator Physics Group at Daresbury Laboratory said: “This is a significant milestone towards ALICE’s main target of demonstrating energy recovery. Energy recovery means that the energy used to create the beam is recovered and re-used after each circuit of the accelerator, so the best beams of light scientists will ever have used can also be produced most cost-effectively. Achieving the first high-energy beam is a significant step forward for the scientists and engineers at STFC Daresbury Laboratory who can now move on to commissioning the full accelerator system and demonstrating energy recovery.”

Wendy Taylor MCIPR | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>