Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With 1st Neutrino Events, Multinational Team In Japan Takes 1st Step To Answering Why Only Matter In Universe

25.11.2009
Physicists from the Japanese-led multi-national T2K neutrino collaboration announced today that over the weekend they detected the first neutrino events generated by their newly built neutrino beam at the J-PARC accelerator laboratory in Tokai, Japan.

Protons from the 30-GeV Main Ring synchrotron were directed onto a carbon target, where their collisions produced charged particles called pions. These pions travelled through a helium-filled volume where they decayed to produce a beam of the elusive particles called neutrinos.

These neutrinos then flew 200 metres through the earth to a sophisticated detector system capable of making detailed measurements of their energy, direction, and type. The data from the complex detector system is still being analysed, but the physicists have seen at least 3 neutrino events, in line with the expectation based on the current beam and detector performance.

This detection therefore marks the beginning of the operational phase of the T2K experiment, a 474 physicist, 13 nation collaboration to measure new properties of the ghostly neutrino. Neutrinos interact only weakly with matter, and thus pass effortlessly through the earth (and mostly through the detectors!). Neutrinos exist in three types, called electron, muon, and tau; linked by particle interactions to their more familiar charged cousins like the electron. Measurements over the last few decades, notably by the Super Kamiokande and KamLAND neutrino experiments in western Japan, have shown that neutrinos possess the strange property of neutrino oscillations, whereby one type of neutrino will turn into another as they propagate through space. Neutrino oscillations, which require neutrinos to have mass and therefore were not allowed in our previous theoretical understanding of particle physics, probe new physical laws and are thus of great interest in the study of the fundamental constituents of matter.

They may even be related to the mystery of why there is more matter than anti-matter in the universe, and thus are the focus of intense study worldwide.

Precision measurements of neutrino oscillations can be made using artificial neutrino beams, as pioneered by the K2K neutrino experiment where neutrinos from the KEK laboratory were detected using the vast Super Kamiokande neutrino detector near Toyama. T2K is a more powerful and sophisticated version of the K2K experiment, with a more intense neutrino beam derived from the newly-built Main Ring synchrotron at the J-PARC accelerator laboratory. The beam was built by physicists from KEK in cooperation with other Japanese institutions and with assistance from the US, Canadian, UK and French T2K institutes. Prof. Chang Kee Jung of Stony Brook University, Stony Brook, New York, leader of the US T2K project, said “I am somewhat stunned by this seemingly effortless achievement considering the complexity of the machinery, the operation and international nature of the project. This is a result of a strong support from the Japanese government for basic science, which I hope will continue, and hard work and ingenuity of all involved. I am excited about more ground breaking findings from this experiment in the near future”. The beam is aimed once again at Super-Kamiokande, which has been upgraded for this experiment with new electronics and software. Before the neutrinos leave the J-PARC facility their properties are determined by a sophisticated “near” detector, partly based on a huge magnet donated from CERN where it had earlier been used for neutrino experiments (and for the UA1 experiment, which won the Nobel Prize for the discovery of the W and Z bosons which are the basis of neutrino interactions), and it is this detector which caught the first events.

The first neutrino events were detected in a specialize detector, called the INGRID, whose purpose is to determine the neutrino beam’s direction and profile. Further tests of the T2K neutrino beam are scheduled for December, and the experiment plans to begin production running in mid-January. Another major milestone should be observed soon after – the first observation of a neutrino event from the T2K beam in the Super-Kamiokande experiment. Running will continue until the summer, by which time the experiment hopes to have made the most sensitive search yet achieved for a so-far unobserved critical neutrino oscillation mode dominated by oscillations between all three types of neutrinos.

In the coming years this search will be improved even further, with the hope that the 3-mode oscillation will be observed, allowing measurements to begin comparing the oscillations of neutrinos and anti-neutrinos, probing the physics of matter/ anti-matter asymmetry in the neutrino sector.

Background: The T2K collaboration consists of 474 physicists from 67 institutes in 12 countries (Japan, South Korea, Canada, the United States, the United Kingdom, France, Spain, Italy, Switzerland, Germany, Poland, and Russia). The experiment consists of a new neutrino beam using the recently constructed 30 GeV synchrotron at the J-PARC laboratory in Tokai, Japan, a set of near detectors constructed 280m from the neutrino production target, and the Super Kamiokande detector in western Japan.

The U.S. participation in the T2K experiment is supported by the U.S. Department of energy. The U.S. collaboration consists of 60 physicists from 8 institutions (Brookhaven National Laboratory, University of Colorado, Boulder, Colorado State University, Louisiana State University, University of Pittsburgh, University of Rochester, Stony Brook University, and University of Washington).

For further information, please contact:
Japan: Dr. Takashi Kobayashi, KEK, takashi.kobayashi@kek.jp, phone: +81-29-864-5414.

USA: Prof. Chang Kee Jung, Stony Brook University, alpinist@nngroup.physics.sunysb.edu, Phone: +1 (631) 632-8108, (631) 474-4563 (h), (631) 707-2018 (c).

Prof. Chang Kee Jung | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>