Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With 1st Neutrino Events, Multinational Team In Japan Takes 1st Step To Answering Why Only Matter In Universe

25.11.2009
Physicists from the Japanese-led multi-national T2K neutrino collaboration announced today that over the weekend they detected the first neutrino events generated by their newly built neutrino beam at the J-PARC accelerator laboratory in Tokai, Japan.

Protons from the 30-GeV Main Ring synchrotron were directed onto a carbon target, where their collisions produced charged particles called pions. These pions travelled through a helium-filled volume where they decayed to produce a beam of the elusive particles called neutrinos.

These neutrinos then flew 200 metres through the earth to a sophisticated detector system capable of making detailed measurements of their energy, direction, and type. The data from the complex detector system is still being analysed, but the physicists have seen at least 3 neutrino events, in line with the expectation based on the current beam and detector performance.

This detection therefore marks the beginning of the operational phase of the T2K experiment, a 474 physicist, 13 nation collaboration to measure new properties of the ghostly neutrino. Neutrinos interact only weakly with matter, and thus pass effortlessly through the earth (and mostly through the detectors!). Neutrinos exist in three types, called electron, muon, and tau; linked by particle interactions to their more familiar charged cousins like the electron. Measurements over the last few decades, notably by the Super Kamiokande and KamLAND neutrino experiments in western Japan, have shown that neutrinos possess the strange property of neutrino oscillations, whereby one type of neutrino will turn into another as they propagate through space. Neutrino oscillations, which require neutrinos to have mass and therefore were not allowed in our previous theoretical understanding of particle physics, probe new physical laws and are thus of great interest in the study of the fundamental constituents of matter.

They may even be related to the mystery of why there is more matter than anti-matter in the universe, and thus are the focus of intense study worldwide.

Precision measurements of neutrino oscillations can be made using artificial neutrino beams, as pioneered by the K2K neutrino experiment where neutrinos from the KEK laboratory were detected using the vast Super Kamiokande neutrino detector near Toyama. T2K is a more powerful and sophisticated version of the K2K experiment, with a more intense neutrino beam derived from the newly-built Main Ring synchrotron at the J-PARC accelerator laboratory. The beam was built by physicists from KEK in cooperation with other Japanese institutions and with assistance from the US, Canadian, UK and French T2K institutes. Prof. Chang Kee Jung of Stony Brook University, Stony Brook, New York, leader of the US T2K project, said “I am somewhat stunned by this seemingly effortless achievement considering the complexity of the machinery, the operation and international nature of the project. This is a result of a strong support from the Japanese government for basic science, which I hope will continue, and hard work and ingenuity of all involved. I am excited about more ground breaking findings from this experiment in the near future”. The beam is aimed once again at Super-Kamiokande, which has been upgraded for this experiment with new electronics and software. Before the neutrinos leave the J-PARC facility their properties are determined by a sophisticated “near” detector, partly based on a huge magnet donated from CERN where it had earlier been used for neutrino experiments (and for the UA1 experiment, which won the Nobel Prize for the discovery of the W and Z bosons which are the basis of neutrino interactions), and it is this detector which caught the first events.

The first neutrino events were detected in a specialize detector, called the INGRID, whose purpose is to determine the neutrino beam’s direction and profile. Further tests of the T2K neutrino beam are scheduled for December, and the experiment plans to begin production running in mid-January. Another major milestone should be observed soon after – the first observation of a neutrino event from the T2K beam in the Super-Kamiokande experiment. Running will continue until the summer, by which time the experiment hopes to have made the most sensitive search yet achieved for a so-far unobserved critical neutrino oscillation mode dominated by oscillations between all three types of neutrinos.

In the coming years this search will be improved even further, with the hope that the 3-mode oscillation will be observed, allowing measurements to begin comparing the oscillations of neutrinos and anti-neutrinos, probing the physics of matter/ anti-matter asymmetry in the neutrino sector.

Background: The T2K collaboration consists of 474 physicists from 67 institutes in 12 countries (Japan, South Korea, Canada, the United States, the United Kingdom, France, Spain, Italy, Switzerland, Germany, Poland, and Russia). The experiment consists of a new neutrino beam using the recently constructed 30 GeV synchrotron at the J-PARC laboratory in Tokai, Japan, a set of near detectors constructed 280m from the neutrino production target, and the Super Kamiokande detector in western Japan.

The U.S. participation in the T2K experiment is supported by the U.S. Department of energy. The U.S. collaboration consists of 60 physicists from 8 institutions (Brookhaven National Laboratory, University of Colorado, Boulder, Colorado State University, Louisiana State University, University of Pittsburgh, University of Rochester, Stony Brook University, and University of Washington).

For further information, please contact:
Japan: Dr. Takashi Kobayashi, KEK, takashi.kobayashi@kek.jp, phone: +81-29-864-5414.

USA: Prof. Chang Kee Jung, Stony Brook University, alpinist@nngroup.physics.sunysb.edu, Phone: +1 (631) 632-8108, (631) 474-4563 (h), (631) 707-2018 (c).

Prof. Chang Kee Jung | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>