Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With 1st Neutrino Events, Multinational Team In Japan Takes 1st Step To Answering Why Only Matter In Universe

25.11.2009
Physicists from the Japanese-led multi-national T2K neutrino collaboration announced today that over the weekend they detected the first neutrino events generated by their newly built neutrino beam at the J-PARC accelerator laboratory in Tokai, Japan.

Protons from the 30-GeV Main Ring synchrotron were directed onto a carbon target, where their collisions produced charged particles called pions. These pions travelled through a helium-filled volume where they decayed to produce a beam of the elusive particles called neutrinos.

These neutrinos then flew 200 metres through the earth to a sophisticated detector system capable of making detailed measurements of their energy, direction, and type. The data from the complex detector system is still being analysed, but the physicists have seen at least 3 neutrino events, in line with the expectation based on the current beam and detector performance.

This detection therefore marks the beginning of the operational phase of the T2K experiment, a 474 physicist, 13 nation collaboration to measure new properties of the ghostly neutrino. Neutrinos interact only weakly with matter, and thus pass effortlessly through the earth (and mostly through the detectors!). Neutrinos exist in three types, called electron, muon, and tau; linked by particle interactions to their more familiar charged cousins like the electron. Measurements over the last few decades, notably by the Super Kamiokande and KamLAND neutrino experiments in western Japan, have shown that neutrinos possess the strange property of neutrino oscillations, whereby one type of neutrino will turn into another as they propagate through space. Neutrino oscillations, which require neutrinos to have mass and therefore were not allowed in our previous theoretical understanding of particle physics, probe new physical laws and are thus of great interest in the study of the fundamental constituents of matter.

They may even be related to the mystery of why there is more matter than anti-matter in the universe, and thus are the focus of intense study worldwide.

Precision measurements of neutrino oscillations can be made using artificial neutrino beams, as pioneered by the K2K neutrino experiment where neutrinos from the KEK laboratory were detected using the vast Super Kamiokande neutrino detector near Toyama. T2K is a more powerful and sophisticated version of the K2K experiment, with a more intense neutrino beam derived from the newly-built Main Ring synchrotron at the J-PARC accelerator laboratory. The beam was built by physicists from KEK in cooperation with other Japanese institutions and with assistance from the US, Canadian, UK and French T2K institutes. Prof. Chang Kee Jung of Stony Brook University, Stony Brook, New York, leader of the US T2K project, said “I am somewhat stunned by this seemingly effortless achievement considering the complexity of the machinery, the operation and international nature of the project. This is a result of a strong support from the Japanese government for basic science, which I hope will continue, and hard work and ingenuity of all involved. I am excited about more ground breaking findings from this experiment in the near future”. The beam is aimed once again at Super-Kamiokande, which has been upgraded for this experiment with new electronics and software. Before the neutrinos leave the J-PARC facility their properties are determined by a sophisticated “near” detector, partly based on a huge magnet donated from CERN where it had earlier been used for neutrino experiments (and for the UA1 experiment, which won the Nobel Prize for the discovery of the W and Z bosons which are the basis of neutrino interactions), and it is this detector which caught the first events.

The first neutrino events were detected in a specialize detector, called the INGRID, whose purpose is to determine the neutrino beam’s direction and profile. Further tests of the T2K neutrino beam are scheduled for December, and the experiment plans to begin production running in mid-January. Another major milestone should be observed soon after – the first observation of a neutrino event from the T2K beam in the Super-Kamiokande experiment. Running will continue until the summer, by which time the experiment hopes to have made the most sensitive search yet achieved for a so-far unobserved critical neutrino oscillation mode dominated by oscillations between all three types of neutrinos.

In the coming years this search will be improved even further, with the hope that the 3-mode oscillation will be observed, allowing measurements to begin comparing the oscillations of neutrinos and anti-neutrinos, probing the physics of matter/ anti-matter asymmetry in the neutrino sector.

Background: The T2K collaboration consists of 474 physicists from 67 institutes in 12 countries (Japan, South Korea, Canada, the United States, the United Kingdom, France, Spain, Italy, Switzerland, Germany, Poland, and Russia). The experiment consists of a new neutrino beam using the recently constructed 30 GeV synchrotron at the J-PARC laboratory in Tokai, Japan, a set of near detectors constructed 280m from the neutrino production target, and the Super Kamiokande detector in western Japan.

The U.S. participation in the T2K experiment is supported by the U.S. Department of energy. The U.S. collaboration consists of 60 physicists from 8 institutions (Brookhaven National Laboratory, University of Colorado, Boulder, Colorado State University, Louisiana State University, University of Pittsburgh, University of Rochester, Stony Brook University, and University of Washington).

For further information, please contact:
Japan: Dr. Takashi Kobayashi, KEK, takashi.kobayashi@kek.jp, phone: +81-29-864-5414.

USA: Prof. Chang Kee Jung, Stony Brook University, alpinist@nngroup.physics.sunysb.edu, Phone: +1 (631) 632-8108, (631) 474-4563 (h), (631) 707-2018 (c).

Prof. Chang Kee Jung | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>