Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

York U researchers uncovering how ovarian cancer resists chemotherapy

03.03.2011
York University researchers have zeroed in on a genetic process that may allow ovarian cancer to resist chemotherapy.

Researchers in the university's Faculty of Science & Engineering studied a tiny strand of our genetic makeup known as a MicroRNA, involved in the regulation of gene expression. Cancer occurs when gene regulation goes haywire.

"Ovarian cancer is a very deadly disease because it's hard to detect," says biology professor Chun Peng, who co-authored the study. By the time it's diagnosed, usually it is in its late stages. And by that point there's really no way to treat the disease. Even when the disease is discovered in its early stages, chemotherapy doesn't always work," she says.

Peng was among a team of researchers that discovered a receptor, ALK7, that induces cell-death in epithelial ovarian cancer cells. They have now discerned that microRNA 376c targets this crucial receptor, inhibiting its expression and allowing ovarian cancer cells to thrive.

"Our evidence suggests that microRNA 376c is crucial to determining how a patient will respond to a chemotherapeutic agent," says Peng. "It allows cancer cells to survive by targeting the very process that kills them off," she says.

In examining tumours taken from patients who were non-responsive to chemotherapy, researchers found a higher expression of microRNA 376c and a much lower expression of ALK7.

Peng believes that this research is a step towards being able to make chemotherapy drugs more effective in the treatment of the disease.

"Further study is needed, but ultimately if we can introduce anti-microRNAs that would lower the level of those microRNAs that make cancer cells resistant to chemotherapeutic drugs, we will be able to make chemotherapy more effective against ovarian cancer," Peng says.

She urges women to educate themselves about the risk factors and symptoms of the disease. For more information, visit http://www.ovariancanada.org .

Peng is a world expert in the area of ovarian cancer and the molecular basis of complications in pregnancy. Her research on chemo-resistance has also contributed to knowledge and prediction of pre-eclampsia, a pregnancy disorder that is a leading cause of maternal and perinatal complications and death.

The article, "MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance," was published in the Journal of Cell Science.

The study's lead author, Gang Ye, is a Research Associate in Peng's lab. Several trainees in Peng's lab, as well as scientists in Toronto's Sunnybrook Research Institute and in China also participated in the project.

The research was supported by an operating grant from the Canadian Institutes of Health Research (CIHR) and a mid-career award to Peng from the Ontario Women's Health Council/CIHR. Ye was supported in part by a Fellowship from the Toronto Ovarian Cancer Research Network.

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada's most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York's 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

Media Contact:

Melissa Hughes, Media Relations, York University, 416 736 2100 x22097, mehughes@yorku.ca

Melissa Hughes | EurekAlert!
Further information:
http://www.yorku.ca

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>