Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

York scientists investigate the fiber of our being

20.01.2014
We are all aware of the health benefits of "dietary fibre". But what is dietary fibre and how do we metabolise it?

Research at the University of York's Structural Biology Laboratory, in collaboration with groups in Canada, the USA and Sweden, has begun to uncover how our gut bacteria metabolise the complex dietary carbohydrates found in fruits and vegetables.

Trillions of bacteria live in human intestines - there are about ten times more bacterial cells in the average person's body than human ones. Known as "microbiota", these bacteria have a vital role to play in human health: they are central to our metabolism and well-being.

The research team has uncovered how one group of gut bacteria, known as Bacteroidetes, digest complex sugars known as xyloglucans. These make up to 25 per cent of the dry weight of dietary fruit and vegetables including lettuce, onion, aubergine and tomatoes.

Understanding how these bacteria digest complex carbohydrates informs studies on a wide range of nutritional issues. These include prebiotics (the consumption of 'beneficial' micro-organisms as a food supplement) and probiotics (the consumption of foods or supplements intended to stimulate the production of healthy bacteria in the gut).

Researchers from the York Structural Biology Laboratory in the University's Department of Chemistry, and international collaborators have carried out detailed structural and mechanistic studies into the precise functioning of specific enzymes. This work has shed further light on which organisms can and cannot digest certain fruits and vegetables, and how and why the "good bacteria" do what they do.

Professor Gideon Davies, who led the research at York, said: "Despite our omnivorous diet, humans aren't well equipped to eat complex plant matter; for this we rely on our gut bacteria. This work is helping us to understand the science of that process.

"The possible implications for commerce and industry extend beyond the realm of human nutrition, however. The study of how enzymes break down plant matter is also of direct relevance to the development of processes for environmentally-friendly energy solutions such as biofuels." The research at York was funded by the Biotechnology and Biological Sciences Research Council (BBSRC)

Caron Lett | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>