Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast model offers clues to possible drug targets for Lou Gehrig's disease, study shows

29.10.2012
Amyotrophic lateral sclerosis, also called Lou Gehrig's disease, is a devastatingly cruel neurodegenerative disorder that robs sufferers of the ability to move, speak and, finally, breathe.

Now researchers at the Stanford University School of Medicine and San Francisco's Gladstone Institutes have used baker's yeast — a tiny, one-celled organism — to identify a chink in the armor of the currently incurable disease that may eventually lead to new therapies for human patients.

"Even though yeast and humans are separated by a billion years of evolution, we were able to use the power of yeast genetics to identify an unexpected potential drug target for ALS," said Aaron Gitler, PhD, an associate professor of genetics at Stanford. "Many neurodegenerative disorders such as ALS, Parkinson's and Alzheimer's exhibit protein clumping or misfolding within the neurons that is thought to either cause or contribute to the conditions. We are trying to figure out why these proteins aggregate in neurons in the brain and spinal cord, and what happens when they do."

In 2008, Gitler received a New Innovator award from the National Institutes of Health to use yeast as a model for understanding human neurodegenerative diseases and as a way to identify new targets for drug development.

Gitler is the co-senior author of the research, which will be published online Oct. 28 in Nature Genetics. Robert Farese, Jr., MD, a senior investigator at the Gladstone Institutes, is the other co-senior author. Stanford graduate student Maria Armakola shares co-first authorship with Matthew Higgins, PhD, a postdoctoral scholar at Gladstone.

Most cases of ALS have no clear-cut cause. However, it has recently been shown that an RNA-binding protein called TDP-43 accumulates in clumps in the cytoplasm of spinal cord neurons in many people with the condition, and mutations in this protein have been found in some people with the ALS. Researchers like Gitler and Farese have been able to mimic the disease in yeast by expressing TDP-43 at higher-than-normal levels, which causes the protein to form lethal clumps in the cells' cytoplasm.

"In humans, the progression of the disease can take years before symptoms arise," said Gitler. "But in yeast, we see protein clumping in the cytoplasm within two days and the cells rapidly begin to die." With their model system in place, Gitler and Farese set out to see whether it was possible to protect yeast cells from this effect by tinkering with the function of other proteins in the cell.

In this study, the researchers discovered that blocking the production of a protein called Dbr1 in a yeast model stops the TDP-43 clumping and allows the cells to live normally. The researchers confirmed the results in human nerve cells grown in the laboratory and in rat neurons overexpressing TDP-43.

"In this study we made no assumptions as to how TDP-43 injures cells," said Farese, "but instead screened the whole yeast genome to find genes that might prevent the toxicity. Independently, both our lab and the Gitler lab found that loss of Dbr1, an enzyme involved in RNA processing, could do this."

Dbr1 serves as part of the cellular clean-up crew that mops up the bits of unwanted RNA generated as part of the protein production line. In our DNA, most genes consist of coding regions, called exons, broken up into several segments by non-coding regions, called introns. Cells can make many different, related proteins from the same stretch of DNA by mixing and matching different exons in a process called splicing.

When the DNA is first copied, or transcribed, into RNA, the introns as well as the exons are included. But the cell quickly splices out the introns, which are released into the cytoplasm as little loops, or lariats. Dbr1, in turn, clips the loops to open them and make them accessible to the cell's disposal system.

Blocking the production of Dbr1 causes the RNA lariats to build up in the cytoplasm. The researchers showed — by creating lariats with a binding site for a fluorescent tracking protein — that the mutant TDP-43 binds to these excess lariats rather than clumping. The effect is like using a paper towel to mop up a spill on your computer keyboard: binding to the lariats appears to keep TDP-43 from causing havoc elsewhere.

"Normally, TDP-43 is found in the nucleus," said first author Armakola. "But in the diseased cells, it aggregates in the cytoplasm and forms clumps. We developed a novel way to track where these lariats go in living cells, and we saw that when Dbr1 is missing, the lariats act as a sink to sequester TDP-43."

The researchers note that it's still not entirely clear whether the cells die because the mutant TDP-43 is drawing essential RNA transcripts or regulatory molecules away from the nucleus and into the cytoplasm, or because it's not performing its normal RNA-binding function in the nucleus. Both could contribute to the progression of the disease.

The results in the yeast, rodent and human cells, however, suggest that therapeutic approaches aimed at blocking Dbr1 function, or even creating artificial lariat-like formations to draw away the mutant molecule, should be explored.

"Next, we'd like to explore blocking Dbr1 function in animals such as flies, worms and rodents," said Armakola. "We're also interested in identifying small molecule inhibitors of Dbr1."

Other Stanford co-authors include graduate student Matthew Figley. The research was supported by the NIH, the Ellison Medical Foundation, the Packard Center for ALS Research at Johns Hopkins, the Consortium for Frontotemporal Research, the ALS Association, the Taube-Koret Center, the Hellman Family Foundation, the Pew Charitable Trusts, the Rita Allen Foundation, the Searle Scholars Program, the Keck Foundation and the National Center for Research Resources.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>