Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worm provides clues about preventing damage caused by low-oxygen during stroke, heart attack

02.02.2009
Neurobiologists at Washington University School of Medicine in St. Louis have identified pathways that allow microscopic worms to survive in a low-oxygen, or hypoxic, environment.

They believe the finding could have implications for conditions such as stroke, heart attack and cancer. Sensitivity to low oxygen helps determine how damaging those medical conditions can be. The researchers report their findings in the Jan. 30 issue of the journal Science.

"In stroke and heart attack, cells die because they lack oxygen," explains principal investigator C. Michael Crowder, M.D., Ph.D. "In cancer, the opposite is true. Cancer cells are hypoxia-resistant in many cases, and their potential to spread throughout the body tends to correlate with their degree of hypoxia resistance."

Crowder says it may be possible to develop more effective therapies for stroke and heart attack, on one hand, and cancer, on the other, when scientists better understand how cells protect themselves from oxygen deprivation. In the case of stroke and heart attack, therapies would involve making healthy cells resistant to hypoxia. Cancer therapies might work more effectively if it were possible to make hypoxia-resistant cells more vulnerable to low oxygen levels.

In new experiments, Crowder's team manipulated genes in the worm Caenorhabditis elegans to alter the organism's sensitivity to a low-oxygen environment. They did that by identifying a gene that controls the translation of genetic information into specific proteins. Mutant copies of the gene cut translation rates in half, which conferred 100% survival to the animals compared to 100% death in non-mutant worms.

Crowder says that inhibiting translation likely protects cells from hypoxia by reducing energy consumption because making proteins consumes a lot of energy. The researchers were surprised by the degree of resistance to hypoxia when the translation rate was cut. They wanted to find out whether increasing hypoxia resistance was explained only by the fact that the cells were using less energy.

In a second experiment, the researchers introduced another mutation into the worms to evaluate its effect on the original mutation. The second mutation affects a process known as protein folding.

"In some cells, hypoxia has been shown to generate unfolded proteins," says Crowder, the Dr. Seymour and Rose T. Brown Professor in Anesthesiology and professor of developmental biology. "So then you have this load of unfolded proteins that may be toxic and promote cell death from hypoxia. We wondered whether suppressing translation in the cell might make it resistant to hypoxia by reducing the load of unfolded proteins, and that's what we saw."

Folding is important in allowing proteins to function properly. Every protein has shapes and pockets and active sites that bind to other proteins and perform various functions. If a particular protein doesn't "fold" into the proper shape, it can't do its job. It's not clear why that might be toxic, but this study suggests fewer improperly folded proteins make exposure to low oxygen less toxic.

Connecting these discoveries to potential stroke and heart attack therapies will involve several steps. First, Crowder plans to move beyond C. elegans to see whether these techniques also will protect neurons in mammals.

"If that happens, then I think there's hope that, eventually, we could target this process for therapy," Crowder says. "At this point in time, I think we're really just scratching the surface of the basic mechanisms of what controls hypoxic injury. It may be that protein translation doesn't ultimately end up being the answer, but maybe it will lead us to an answer. It already has led us to this unfolded protein response that seems to have potential as a therapy."

The challenge in treating stroke is that most cells in the brain continue to get plenty of oxygen. Only the part of the brain directly affected by the stroke becomes hypoxic. So Crowder says potential therapies need to protect brain cells affected by hypoxia without harming other cells that continue to experience normal oxygen levels. Targeting the unfolded protein response is attractive because, in theory, therapies would not bother cells with adequate oxygen but would react with the improper protein folding that occurs in cells not getting enough oxygen. Whether such a strategy will work is unknown.

"Many people have thought they made very promising inroads into stroke therapy over the last 50 years, and none of those treatments have been good enough," Crowder says. "We have no illusions that finding ways to reduce cell death from hypoxia will be easy. But using this approach of randomly mutating genes and seeing what happens helped us to find this unfolded protein response. It works in the worm, so now let's see what happens in mammals."

Anderson LL, Mao X, Scott BA, Crowder CM. Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science, vol. 323, pp. 630-633 Jan. 30, 2009

This study was supported by that National Institute of Neurological Disorders and Stroke of the National Institutes of Health, a Neuroscience of Brain Disorders Award from the McKnight Endowment Fund for Neuroscience and an American Heart Association Established Investigator Award.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's Hospitals. The School of Medicine is one of the leading medical research, teaching, and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's Hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>