Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worm provides clues about preventing damage caused by low-oxygen during stroke, heart attack

02.02.2009
Neurobiologists at Washington University School of Medicine in St. Louis have identified pathways that allow microscopic worms to survive in a low-oxygen, or hypoxic, environment.

They believe the finding could have implications for conditions such as stroke, heart attack and cancer. Sensitivity to low oxygen helps determine how damaging those medical conditions can be. The researchers report their findings in the Jan. 30 issue of the journal Science.

"In stroke and heart attack, cells die because they lack oxygen," explains principal investigator C. Michael Crowder, M.D., Ph.D. "In cancer, the opposite is true. Cancer cells are hypoxia-resistant in many cases, and their potential to spread throughout the body tends to correlate with their degree of hypoxia resistance."

Crowder says it may be possible to develop more effective therapies for stroke and heart attack, on one hand, and cancer, on the other, when scientists better understand how cells protect themselves from oxygen deprivation. In the case of stroke and heart attack, therapies would involve making healthy cells resistant to hypoxia. Cancer therapies might work more effectively if it were possible to make hypoxia-resistant cells more vulnerable to low oxygen levels.

In new experiments, Crowder's team manipulated genes in the worm Caenorhabditis elegans to alter the organism's sensitivity to a low-oxygen environment. They did that by identifying a gene that controls the translation of genetic information into specific proteins. Mutant copies of the gene cut translation rates in half, which conferred 100% survival to the animals compared to 100% death in non-mutant worms.

Crowder says that inhibiting translation likely protects cells from hypoxia by reducing energy consumption because making proteins consumes a lot of energy. The researchers were surprised by the degree of resistance to hypoxia when the translation rate was cut. They wanted to find out whether increasing hypoxia resistance was explained only by the fact that the cells were using less energy.

In a second experiment, the researchers introduced another mutation into the worms to evaluate its effect on the original mutation. The second mutation affects a process known as protein folding.

"In some cells, hypoxia has been shown to generate unfolded proteins," says Crowder, the Dr. Seymour and Rose T. Brown Professor in Anesthesiology and professor of developmental biology. "So then you have this load of unfolded proteins that may be toxic and promote cell death from hypoxia. We wondered whether suppressing translation in the cell might make it resistant to hypoxia by reducing the load of unfolded proteins, and that's what we saw."

Folding is important in allowing proteins to function properly. Every protein has shapes and pockets and active sites that bind to other proteins and perform various functions. If a particular protein doesn't "fold" into the proper shape, it can't do its job. It's not clear why that might be toxic, but this study suggests fewer improperly folded proteins make exposure to low oxygen less toxic.

Connecting these discoveries to potential stroke and heart attack therapies will involve several steps. First, Crowder plans to move beyond C. elegans to see whether these techniques also will protect neurons in mammals.

"If that happens, then I think there's hope that, eventually, we could target this process for therapy," Crowder says. "At this point in time, I think we're really just scratching the surface of the basic mechanisms of what controls hypoxic injury. It may be that protein translation doesn't ultimately end up being the answer, but maybe it will lead us to an answer. It already has led us to this unfolded protein response that seems to have potential as a therapy."

The challenge in treating stroke is that most cells in the brain continue to get plenty of oxygen. Only the part of the brain directly affected by the stroke becomes hypoxic. So Crowder says potential therapies need to protect brain cells affected by hypoxia without harming other cells that continue to experience normal oxygen levels. Targeting the unfolded protein response is attractive because, in theory, therapies would not bother cells with adequate oxygen but would react with the improper protein folding that occurs in cells not getting enough oxygen. Whether such a strategy will work is unknown.

"Many people have thought they made very promising inroads into stroke therapy over the last 50 years, and none of those treatments have been good enough," Crowder says. "We have no illusions that finding ways to reduce cell death from hypoxia will be easy. But using this approach of randomly mutating genes and seeing what happens helped us to find this unfolded protein response. It works in the worm, so now let's see what happens in mammals."

Anderson LL, Mao X, Scott BA, Crowder CM. Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science, vol. 323, pp. 630-633 Jan. 30, 2009

This study was supported by that National Institute of Neurological Disorders and Stroke of the National Institutes of Health, a Neuroscience of Brain Disorders Award from the McKnight Endowment Fund for Neuroscience and an American Heart Association Established Investigator Award.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's Hospitals. The School of Medicine is one of the leading medical research, teaching, and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's Hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>