Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worm provides clues about preventing damage caused by low-oxygen during stroke, heart attack

02.02.2009
Neurobiologists at Washington University School of Medicine in St. Louis have identified pathways that allow microscopic worms to survive in a low-oxygen, or hypoxic, environment.

They believe the finding could have implications for conditions such as stroke, heart attack and cancer. Sensitivity to low oxygen helps determine how damaging those medical conditions can be. The researchers report their findings in the Jan. 30 issue of the journal Science.

"In stroke and heart attack, cells die because they lack oxygen," explains principal investigator C. Michael Crowder, M.D., Ph.D. "In cancer, the opposite is true. Cancer cells are hypoxia-resistant in many cases, and their potential to spread throughout the body tends to correlate with their degree of hypoxia resistance."

Crowder says it may be possible to develop more effective therapies for stroke and heart attack, on one hand, and cancer, on the other, when scientists better understand how cells protect themselves from oxygen deprivation. In the case of stroke and heart attack, therapies would involve making healthy cells resistant to hypoxia. Cancer therapies might work more effectively if it were possible to make hypoxia-resistant cells more vulnerable to low oxygen levels.

In new experiments, Crowder's team manipulated genes in the worm Caenorhabditis elegans to alter the organism's sensitivity to a low-oxygen environment. They did that by identifying a gene that controls the translation of genetic information into specific proteins. Mutant copies of the gene cut translation rates in half, which conferred 100% survival to the animals compared to 100% death in non-mutant worms.

Crowder says that inhibiting translation likely protects cells from hypoxia by reducing energy consumption because making proteins consumes a lot of energy. The researchers were surprised by the degree of resistance to hypoxia when the translation rate was cut. They wanted to find out whether increasing hypoxia resistance was explained only by the fact that the cells were using less energy.

In a second experiment, the researchers introduced another mutation into the worms to evaluate its effect on the original mutation. The second mutation affects a process known as protein folding.

"In some cells, hypoxia has been shown to generate unfolded proteins," says Crowder, the Dr. Seymour and Rose T. Brown Professor in Anesthesiology and professor of developmental biology. "So then you have this load of unfolded proteins that may be toxic and promote cell death from hypoxia. We wondered whether suppressing translation in the cell might make it resistant to hypoxia by reducing the load of unfolded proteins, and that's what we saw."

Folding is important in allowing proteins to function properly. Every protein has shapes and pockets and active sites that bind to other proteins and perform various functions. If a particular protein doesn't "fold" into the proper shape, it can't do its job. It's not clear why that might be toxic, but this study suggests fewer improperly folded proteins make exposure to low oxygen less toxic.

Connecting these discoveries to potential stroke and heart attack therapies will involve several steps. First, Crowder plans to move beyond C. elegans to see whether these techniques also will protect neurons in mammals.

"If that happens, then I think there's hope that, eventually, we could target this process for therapy," Crowder says. "At this point in time, I think we're really just scratching the surface of the basic mechanisms of what controls hypoxic injury. It may be that protein translation doesn't ultimately end up being the answer, but maybe it will lead us to an answer. It already has led us to this unfolded protein response that seems to have potential as a therapy."

The challenge in treating stroke is that most cells in the brain continue to get plenty of oxygen. Only the part of the brain directly affected by the stroke becomes hypoxic. So Crowder says potential therapies need to protect brain cells affected by hypoxia without harming other cells that continue to experience normal oxygen levels. Targeting the unfolded protein response is attractive because, in theory, therapies would not bother cells with adequate oxygen but would react with the improper protein folding that occurs in cells not getting enough oxygen. Whether such a strategy will work is unknown.

"Many people have thought they made very promising inroads into stroke therapy over the last 50 years, and none of those treatments have been good enough," Crowder says. "We have no illusions that finding ways to reduce cell death from hypoxia will be easy. But using this approach of randomly mutating genes and seeing what happens helped us to find this unfolded protein response. It works in the worm, so now let's see what happens in mammals."

Anderson LL, Mao X, Scott BA, Crowder CM. Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science, vol. 323, pp. 630-633 Jan. 30, 2009

This study was supported by that National Institute of Neurological Disorders and Stroke of the National Institutes of Health, a Neuroscience of Brain Disorders Award from the McKnight Endowment Fund for Neuroscience and an American Heart Association Established Investigator Award.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's Hospitals. The School of Medicine is one of the leading medical research, teaching, and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's Hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>