Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders may be at increased risk for brain damage

08.04.2011
Workers exposed to welding fumes may be at increased risk of damage to the same brain area harmed by Parkinson’s disease, according to a new study by researchers at Washington University School of Medicine in St. Louis.

Fumes produced by welding contain manganese, an element that scientists have linked to neurological problems including Parkinson’s disease-like symptoms.

“In the United States alone, there are more than 1 million workers who perform welding as a part of their jobs,” says Brad Racette, MD, professor of neurology at Washington University School of Medicine. “If further investigation of this potential link between neurotoxic effects and these fumes proves it is valid, it would have a substantial public-health impact for the U.S. workforce and the economy.”

The study appears online April 6, 2011, in Neurology, the medical journal of the American Academy of Neurology.

The study involved 20 welders with no symptoms of Parkinson’s disease, 20 people with Parkinson’s disease who were not welders and 20 people who were not welders and did not have Parkinson’s. The welders were recruited from two shipyards and one metal fabrication company, and each had an average of 30,000 hours of lifetime welding exposure.

All participants were given brain PET and MRI scans and motor skills tests. A neurologist who specializes in movement disorders also examined all participants. The welders' average blood manganese levels were found to be two times the upper limits of normal blood manganese levels established in prior studies of general populations.

In one area of the brain, PET scans indicated that welders had an average 11.7 percent reduction in a marker of the chemical dopamine compared to people who did not weld. Dopamine helps nerve cells communicate and is decreased in specific brain regions in people with Parkinson’s disease. The welders’ motor skills test scores also showed mild movement difficulties that were not as extensive as those found in the early Parkinson’s disease patients.

Although the same area of the brain was affected as in Parkinson’s disease, the pattern of effects within this area was reversed. Parkinson's disease normally has the greatest impact on the rear of a structure known as the putamen. In the welders, the largest drop in the marker for dopamine occurred in a structure behind the putamen known as the caudate.

“While these changes in the brain may be an early marker of neuron death related to welding exposure, the damage appeared to be different from those of people with full-fledged Parkinson’s disease,” Racette says. “MRI scans also revealed brain changes in welders that were consistent with manganese deposits in the brain.”

Racette and his colleagues plan a larger follow-up study to clarify the potential links between welding and brain damage.

Criswell SR, Perlmutter JS, Videen TO, Moerlein SM, Flores HP, Birke AM, Racette BA. Reduced uptake of [18F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, online April 6, 2011.

Funding from the Michael J. Fox Foundation, the National Institutes of Health, the Clinical Science Translational Award, the Neuroscience Blueprint Grant, the American Parkinson Disease Association (APDA) Advanced Research Center at Washington University, the Greater St. Louis Chapter of the APDA, the McDonnell Center for Higher Brain Function and the Barnes-Jewish Hospital Foundation supported this research.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>