Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders may be at increased risk for brain damage

08.04.2011
Workers exposed to welding fumes may be at increased risk of damage to the same brain area harmed by Parkinson’s disease, according to a new study by researchers at Washington University School of Medicine in St. Louis.

Fumes produced by welding contain manganese, an element that scientists have linked to neurological problems including Parkinson’s disease-like symptoms.

“In the United States alone, there are more than 1 million workers who perform welding as a part of their jobs,” says Brad Racette, MD, professor of neurology at Washington University School of Medicine. “If further investigation of this potential link between neurotoxic effects and these fumes proves it is valid, it would have a substantial public-health impact for the U.S. workforce and the economy.”

The study appears online April 6, 2011, in Neurology, the medical journal of the American Academy of Neurology.

The study involved 20 welders with no symptoms of Parkinson’s disease, 20 people with Parkinson’s disease who were not welders and 20 people who were not welders and did not have Parkinson’s. The welders were recruited from two shipyards and one metal fabrication company, and each had an average of 30,000 hours of lifetime welding exposure.

All participants were given brain PET and MRI scans and motor skills tests. A neurologist who specializes in movement disorders also examined all participants. The welders' average blood manganese levels were found to be two times the upper limits of normal blood manganese levels established in prior studies of general populations.

In one area of the brain, PET scans indicated that welders had an average 11.7 percent reduction in a marker of the chemical dopamine compared to people who did not weld. Dopamine helps nerve cells communicate and is decreased in specific brain regions in people with Parkinson’s disease. The welders’ motor skills test scores also showed mild movement difficulties that were not as extensive as those found in the early Parkinson’s disease patients.

Although the same area of the brain was affected as in Parkinson’s disease, the pattern of effects within this area was reversed. Parkinson's disease normally has the greatest impact on the rear of a structure known as the putamen. In the welders, the largest drop in the marker for dopamine occurred in a structure behind the putamen known as the caudate.

“While these changes in the brain may be an early marker of neuron death related to welding exposure, the damage appeared to be different from those of people with full-fledged Parkinson’s disease,” Racette says. “MRI scans also revealed brain changes in welders that were consistent with manganese deposits in the brain.”

Racette and his colleagues plan a larger follow-up study to clarify the potential links between welding and brain damage.

Criswell SR, Perlmutter JS, Videen TO, Moerlein SM, Flores HP, Birke AM, Racette BA. Reduced uptake of [18F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, online April 6, 2011.

Funding from the Michael J. Fox Foundation, the National Institutes of Health, the Clinical Science Translational Award, the Neuroscience Blueprint Grant, the American Parkinson Disease Association (APDA) Advanced Research Center at Washington University, the Greater St. Louis Chapter of the APDA, the McDonnell Center for Higher Brain Function and the Barnes-Jewish Hospital Foundation supported this research.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>