Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VascuBone – a toolbox for customised vascularised bone implants

09.06.2015

The EU project VascuBone was coordinated by the Fraunhofer Institute for In-terfacial Engineering and Biotechnology IGB and has reached the end of a 5-year funding period. In March 2015, the partners of this international research consortium met at the Würzburg Congress Centre to discuss the results of this successful project. The focus of the meeting was the newly developed “Vascu-Bone Toolbox” to apply advanced materials and tailor-made combinations to individualized bone defects.

The final meeting of the EU project VascuBone took place on March 30-31, 2015 in the Würzburg Congress Centre. The goal of this project was to improve bone implants depending on the defect, to minimize the risk of rejection while supporting the body’s own regenerative potential, and to promote new bone growth in different bone defects.


Cells on calcium phoshate: cell skeleton (red), cell connections (green), cell nuclei (blue).

The international consortium and invited guests met to evaluate the results of the original and innovative project goals. Nineteen partners from four European countries were involved during the whole funding period.

The greatest innovation in the past five years is the “VascuBoneToolbox,” which provides various components required for a customised bone implant that supports the body’s own self-healing capacity when it cannot meet its own regenerative needs following severe damage or injury.

The toolbox is comprised of three major components. The first component is a novel, diamond-coated ceramic granulate material with large pores. This material can be readily used as it is easily absorbed in defects, is biocompatible and facilitates the growth of bone cells.

The second major component is proteins acquired from the patient’s own blood to help promote bone tissue growth. The third component consists of cells from the patient’s blood or bone marrow that ensure that the implant is not rejected. Until now, surgeons have used either metal-based implants or tissue transplanted from a patient’s own pelvic bone.

“There are drawbacks to both options: metal remains a foreign material on the surface of which new bone cannot form. Tissue from a patient’s pelvis would be ideal but there is a limit to how much can be removed,” explained VascuBone project coordinator Heike Walles.

The biologist is professor of Tissue Engineering and Regenerative Medicine at the Würzburg University Hospital and Director of the Translational Centre “Regenerative Therapies for Oncology and Musculoskeletal Diseases” of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB’s Würzburg branch.

The VascuBone researchers were already able to demonstrate in pre-clinical trials that the bone implants from the VascuBone “Toolbox” did not accelerate the growth of tumours. Various tests also showed that the implants were also ideal for regenerating bone that is weakened with age. Clinical trials are now underway that will allow the use of the implants in patients within a few years.

The project partners used the meeting to bring together the scientific findings regarding the implant construction and individual functionalisation with autologous cells and proteins. Quality control measures and imaging that have been implemented and the associated studies and tests were then presented. The relevance of tissue engineering was highlighted both from an industrial perspective and in terms of scientific research.

This research has received funding from the European Union’s Seventh Framework Programme under grant agreement no. 242175.

Weitere Informationen:

http://www.igb.fraunhofer.de/en/press-media/press-releases/2015/vascubone-_-a-to...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>