Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV light aids cancer cells that creep along the outside of blood vessels

11.03.2014

A new study by UCLA scientists and colleagues adds further proof to earlier findings by Dr. Claire Lugassy and Dr. Raymond Barnhill of UCLA's Jonsson Comprehensive Cancer Center that deadly melanoma cells can spread through the body by creeping like tiny spiders along the outside of blood vessels without ever entering the bloodstream.

In addition, the new research, published March 6 in the journal Nature, demonstrates that this process is accelerated when the skin cancer cells are exposed to ultraviolet light. The husband-and-wife team of Barnhill and Lugassy collaborated on the study with a team from Germany's University of Bonn led by Dr. Thomas Tuting.

It is well known that melanoma cells from an initial tumor can travel through the bloodstream to other parts of the body, where they accumulate and form new tumors. Through such metastasis, a small skin cancer can become life-threatening by spreading to the brain, lungs, liver or other organs.

Fifteen years ago, Lugassy and Barnhill first discovered and described an alternative metastatic process, which they called extravascular migratory metastasis, or EVMM, by which melanoma cells could move along the outside, or abluminal, surface of blood vessels by way of angiotropism — a biological interaction between the cancer cells and the blood vessel cells. Since then, Lugassy and Barnhill have continued to assemble a body of scientific evidence confirming the existence of this metastatic pathway of cancer cells.

With angiotropism and EVMM, the cancer cells may replace tendril-like cells called pericytes, which are normally found on the outsides of blood vessels, through a process called pericytic mimicry. Imitating the pericytes, the melanoma cells creep along the length of blood vessels until they reach an organ or other point where they accumulate to form new tumors, "potentially explaining the delay between the detection of the primary cancer and the appearance of distant metastases," said Barnhill, a professor of pathology at UCLA.

"At first our idea was controversial," said Lugassy, a UCLA associate professor of pathology. "But mounting evidence confirming angiotropism and EVMM has revolutionized the knowledge of how cancer spreads through the body to the point that other scientists have confirmed the process in other solid-tumor cell types, such as pancreatic cancer."

In the new Nature study, EVMM was observed again by Tuting, Lugassy, Barnhill and their colleagues in a genetically engineered mouse model of melanoma. The researchers also found that the immune systems of mice exposed to ultraviolet radiation responded with inflammation that accelerated the angiotropism, increasing the level of EVMM and leading to more lung metastases than among the mice not exposed to UV light.

This study was conducted at the Laboratory for Experimental Dermatology in Bonn, under the direction of Tuting.

"We have known for a long time that UV radiation is a factor in the development of melanoma," Barnhill said, "but in this study, the melanoma was already present in the mice."

Tuting observed that UV light provoked inflammation at the site of the tumor, which caused the mouse immune system to attract a type of common white blood cells known as neutrophils. The neutrophils, in turn, promoted angiotropism.

With this new knowledge — and the confirmation of Lugassy and Barnhill's research on angiotropism and EVMM — researchers in the scientific community can now begin looking for a drug target that will interfere with this EVMM process. Because the danger of melanoma comes from its metastasis from the skin to the vital organs, being able to slow down or stop this process could turn a disease that is often a death sentence into a manageable chronic illness with relatively little risk of death.

###

This research was supported by the Melanoma Research Network, Jurgen Manchot Stiftung, the American Institute for Cancer Research and the Deutsche Forschungsgemeinschaft (German Research Foundation).

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2013, the Jonsson Cancer Center was named among the top 12 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 14 consecutive years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://newsroom.ucla.edu/portal/ucla/default.aspx

Further reports about: Cancer UCLA accumulate blood creep inflammation melanoma metastasis skin tumors ultraviolet

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>