Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV light aids cancer cells that creep along the outside of blood vessels

11.03.2014

A new study by UCLA scientists and colleagues adds further proof to earlier findings by Dr. Claire Lugassy and Dr. Raymond Barnhill of UCLA's Jonsson Comprehensive Cancer Center that deadly melanoma cells can spread through the body by creeping like tiny spiders along the outside of blood vessels without ever entering the bloodstream.

In addition, the new research, published March 6 in the journal Nature, demonstrates that this process is accelerated when the skin cancer cells are exposed to ultraviolet light. The husband-and-wife team of Barnhill and Lugassy collaborated on the study with a team from Germany's University of Bonn led by Dr. Thomas Tuting.

It is well known that melanoma cells from an initial tumor can travel through the bloodstream to other parts of the body, where they accumulate and form new tumors. Through such metastasis, a small skin cancer can become life-threatening by spreading to the brain, lungs, liver or other organs.

Fifteen years ago, Lugassy and Barnhill first discovered and described an alternative metastatic process, which they called extravascular migratory metastasis, or EVMM, by which melanoma cells could move along the outside, or abluminal, surface of blood vessels by way of angiotropism — a biological interaction between the cancer cells and the blood vessel cells. Since then, Lugassy and Barnhill have continued to assemble a body of scientific evidence confirming the existence of this metastatic pathway of cancer cells.

With angiotropism and EVMM, the cancer cells may replace tendril-like cells called pericytes, which are normally found on the outsides of blood vessels, through a process called pericytic mimicry. Imitating the pericytes, the melanoma cells creep along the length of blood vessels until they reach an organ or other point where they accumulate to form new tumors, "potentially explaining the delay between the detection of the primary cancer and the appearance of distant metastases," said Barnhill, a professor of pathology at UCLA.

"At first our idea was controversial," said Lugassy, a UCLA associate professor of pathology. "But mounting evidence confirming angiotropism and EVMM has revolutionized the knowledge of how cancer spreads through the body to the point that other scientists have confirmed the process in other solid-tumor cell types, such as pancreatic cancer."

In the new Nature study, EVMM was observed again by Tuting, Lugassy, Barnhill and their colleagues in a genetically engineered mouse model of melanoma. The researchers also found that the immune systems of mice exposed to ultraviolet radiation responded with inflammation that accelerated the angiotropism, increasing the level of EVMM and leading to more lung metastases than among the mice not exposed to UV light.

This study was conducted at the Laboratory for Experimental Dermatology in Bonn, under the direction of Tuting.

"We have known for a long time that UV radiation is a factor in the development of melanoma," Barnhill said, "but in this study, the melanoma was already present in the mice."

Tuting observed that UV light provoked inflammation at the site of the tumor, which caused the mouse immune system to attract a type of common white blood cells known as neutrophils. The neutrophils, in turn, promoted angiotropism.

With this new knowledge — and the confirmation of Lugassy and Barnhill's research on angiotropism and EVMM — researchers in the scientific community can now begin looking for a drug target that will interfere with this EVMM process. Because the danger of melanoma comes from its metastasis from the skin to the vital organs, being able to slow down or stop this process could turn a disease that is often a death sentence into a manageable chronic illness with relatively little risk of death.

###

This research was supported by the Melanoma Research Network, Jurgen Manchot Stiftung, the American Institute for Cancer Research and the Deutsche Forschungsgemeinschaft (German Research Foundation).

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2013, the Jonsson Cancer Center was named among the top 12 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 14 consecutive years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://newsroom.ucla.edu/portal/ucla/default.aspx

Further reports about: Cancer UCLA accumulate blood creep inflammation melanoma metastasis skin tumors ultraviolet

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>