Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM scientists pinpoint critical molecule to celiac disease, possibly other autoimmune disorders

09.09.2009
Findings reveal further detail about protein linked to inflammatory disorders

It was nine years ago that University of Maryland School of Medicine researchers discovered that a mysterious human protein called zonulin played a critical role in celiac disease and other autoimmune disorders, such as multiple sclerosis and diabetes.

Now, scientists have solved the mystery of zonulin's identity, putting a face to the name, in a sense. Scientists led by Alessio Fasano, M.D., have identified zonulin as a molecule in the human body called haptoglobin 2 precursor.

Pinpointing the precise molecule that makes up the mysterious protein will enable a more detailed and thorough study of zonulin and its relationship to a series of inflammatory disorders. The discovery was reported in a new study by Dr. Fasano, published the week of September 7, 2009 in the online version of the Proceedings of the National Academy of Sciences. Dr. Fasano is a professor of pediatrics, medicine and physiology and director of the Mucosal Biology Research Center and the Center for Celiac Research at the University of Maryland School of Medicine.

Haptoglobin is a molecule that has been known to scientists for many years. It was identified as a marker of inflammation in the body. Haptoglobin 1 is the original form of the haptoglobin molecule, and scientists believe it evolved 800 million years ago. Haptoglobin 2 is a permutation found only in humans. It's believed the mutation occurred in India about 2 million years ago, spreading gradually among increasing numbers of people throughout the world.

Dr. Fasano's study revealed that zonulin is the precursor molecule for haptoglobin 2 — that is, it is an immature molecule that matures into haptoglobin 2. It was previously believed that such precursor molecules served no purpose in the body other than to mature into the molecules they were destined to become. But Dr. Fasano's study identifies precursor haptoglobin 2 as the first precursor molecule that serves another function entirely — opening a gateway in the gut, or intestines, to let gluten in. People with celiac disease suffer from a sensitivity to gluten.

"While apes, monkeys and chimpanzees do not have haptoglobin 2, 80 percent of human beings have it," says Dr. Fasano. "Apes, monkeys and chimpanzees rarely develop autoimmune disorders. Human beings suffer from more than 70 different kinds of such conditions. We believe the presence of this pre-haptoglobin 2 is responsible for this difference between species."

"This molecule could be a critical missing piece of the puzzle to lead to a treatment for celiac disease, other autoimmune disorders and allergies and even cancer, all of which are related to an exaggerated production of zonulin/pre-haptoglobin 2 and to the loss of the protective barrier of cells lining the gut and other areas of the body, like the blood brain barrier," says Dr. Fasano.

"The only current treatment for celiac disease is cutting gluten from the diet, but we have confidence Dr. Fasano's work will someday bring further relief to these patients. Zonulin, with its functions in health and disease as outlined in Dr. Fasano's paper, could be the molecule of the century," says E. Albert Reece, M.D., Ph.D., M.B.A., dean of the School of Medicine, vice president for medical affairs of the University of Maryland and John Z. and Akiko K. Bowers Distinguished Professor. Dr. Fasano, as a physician scientist, fulfills two of the core missions of the University of Maryland School of Medicine: making basic science discoveries that can impact human health, and finding ways to translate those discoveries into treatments and diagnostic tools."

People who suffer from celiac disease have a sensitivity to gluten, a protein found in wheat, and suffer gastrointestinal distress and other serious symptoms when they eat it. In celiac patients, gluten generates an exaggerated release of zonulin that makes the gut more permeable to large molecules, including gluten. The permeable gut allows these molecules, such as gluten, access to the rest of the body. This triggers an autoimmune response in which a celiac patient's immune system identifies gluten as an intruder and responds with an attack targeting the intestine instead of the intruder. An inappropriately high level of production of zonulin also seems responsible for the passage through the intestine of intruders other than zonulin, including those related to conditions such as diabetes, multiple sclerosis and even allergies. Recently, other groups have reported elevated production of zonulin affecting the permeability of the blood brain barrier of patients suffering from brain cancer.

"We hope pre-haptoglobin 2 will be a door to a better understanding of not just celiac disease, but of several other devastating conditions that continue to affect the quality of life of millions of individuals," says Dr. Fasano. "This is quite a remarkable molecule that was just flying under the radar. We would have never have thought it would be the key. Now that we have identified this molecule, we are able to replicate it in the lab to use for research purposes. We hope to learn much more about it and its potential for treating and diagnosing celiac disease and other autoimmune conditions. This molecule has opened innumerable doors for our research."

Karen Warmkessel | EurekAlert!
Further information:
http://www.umm.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>