Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound-triggered liposomes for on-demand, local anesthesia

10.08.2017

Novel system triggers release of nerve-blocking agents when and where pain relief is needed most

Researchers at Boston Children's Hospital have found a new way to non-invasively relieve pain at local sites in the body; such systems could one day improve pain management by replacing addictive opioids and short-lasting local anesthetics.


This image shows ultrasound triggering liposomes to release local anesthesia.

Credit: Mary O'Reilly

The novel system uses ultrasound to trigger the release of nerve-blocking agents -- injected into specific sites of the body ahead of time -- when and where pain relief is needed most. A paper describing the findings was published online today in Nature Biomedical Engineering.

"Opioid abuse is a growing problem in healthcare," says the paper's senior author, Daniel Kohane, MD, PhD, a senior associate in critical care medicine at Boston Children's and professor of anesthesiology at Harvard Medical School. "In the future, this system could potentially combat that by giving patients access to non-opioid, effective nerve-blocking drugs."

"One of the most interesting aspects about this system is that the degree of nerve block can be controlled just by adjusting the duration and intensity of the ultrasound," says the paper's co-first author, Alina Rwei, a graduate researcher in Kohane's lab.

Ultrasound is commercially available and widely used in various clinical and therapeutic settings, making it an attractive technology to use as a drug "trigger."

"We envision that patients could get an injection at the hospital and then bring home a small, portable ultrasound device for triggering the nerve-blocking agent," Rwei says. "This could allow patients to manage their pain relief at-will, non-invasively."

Tailoring a sono-sensitive drug delivery system

To create the ultrasound-triggered pain relief system, Kohane's team developed liposomes -- artificial sacs that are micrometers in size -- and filled them with a nerve-blocking drug. The walls of the liposomes contain small molecules called sono-sensitizers, which are sensitive to ultrasound.

"Once the drug-filled liposomes are injected, ultrasound can be applied to penetrate tissue and cause the sensitizers to create reactive oxygen species, which react with lipids in the walls of the liposomes," Kohane says. "This opens the surface of the liposomes and releases the nerve-blocking drug into the local tissue, reducing pain."

The small sono-sensitizer molecules that the team built into the liposomes are the active component of an already-FDA-approved drug that is currently used in photodynamic therapy. Right now, the pain treatment system developed by Kohane's team can be activated by ultrasound up to three days after injection of liposomes, making it well-positioned for future translation as a post-operative pain management strategy.

"Out of all the particle delivery systems, I think liposomes are one of the most clinically-acceptable and customizable options out there," Rwei says. "Our research indicates that liposomes can be tailored to respond to near-infrared light, ultrasound and even magnetic triggers."

###

In addition to Kohane and Rwei, the paper's other contributors are co-first author Juan L. Paris, and co-authors Bruce Wang, Weiping Wang, Christopher D. Axon, Maria Vallet-Regi and Robert Langer.

This work was supported by the National Institutes of Health (GM073626) and the Ministerio de Economía y Competitividad, Spain (BES-2013-064182, EEBB- I-16-11313 associated with MAT2012-35556).

About Boston Children's Hospital

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 11 members of the Institute of Medicine and 10 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 415-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School. For more, visit our Vector and Thriving blogs and follow us on our social media channels: @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Bethany Tripp | EurekAlert!

More articles from Health and Medicine:

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>