Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers find cause of chemotherapy resistance in melanoma

18.09.2012
Study results suggest new approach to treating deadly skin cancer

Researchers with UC Irvine’s Chao Family Comprehensive Cancer Center have identified a major reason why melanoma is largely resistant to chemotherapy.

UCI dermatologist Dr. Anand Ganesan and colleagues found a genetic pathway in melanoma cells that inhibits the cellular mechanism for detecting DNA damage wrought by chemotherapy, thereby building up tolerance to cancer-killing drugs.

Targeting this pathway, comprising the genes RhoJ and Pak1, heralds a new approach to treating the deadly skin cancer, which claims nearly 10,000 U.S. lives each year. Study results appear online in Cancer Research, a journal of the American Association for Cancer Research.

“If we can find a way to turn off the pathway responsible for this resistance, melanoma tumors would suddenly become sensitive to therapies we’ve been using for the last 20 years,” said Ganesan, assistant professor of dermatology and biological chemistry at UCI.

In pursuit of a cause for the chemo tolerance, he and his colleagues performed a genome-wide scan for genes controlling drug resistance in melanoma cells. Their search identified RhoJ, a gene normally involved in blood vessel growth. They saw that in response to drug-induced DNA damage in a melanoma cell, RhoJ activated another gene, Pak1, which initiated a molecular cascade suppressing the cell’s ability to sense this damage — and blocking the apoptosis process.

“Normally, such drug-induced DNA damage would result in cell death,” Ganesan said. “But this blunting of DNA damage response allows melanoma cells to mutate and proliferate. Being capable of rapid adaptation and change is a hallmark feature of this challenging form of cancer and makes it very difficult to treat.”

On the heels of this discovery, he and colleagues have begun exploring methods to inhibit the genes responsible for this DNA damage tolerance. What they come up with could one day supplement chemotherapy treatments for melanoma, Ganesan added.

Hsiang Ho, Jayavani Aruri, Rubina Kapadia and Hootan Mehr of UCI and Michael A. White of the University of Texas Southwestern Medical Center at Dallas participated in the study, which received support from the National Institutes of Health, the University of California Cancer Research Coordinating Committee, the American Cancer Society, Outrun the Sun Inc. and the Robert A. Welch Foundation.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Cancer DNA DNA damage ISDN UCI chemotherapy treatment drug resistance genome-wide scan

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>