Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis neurosurgeons use adult stem cells to grow neck vertebrae

07.09.2011
Neurosurgery researchers at UC Davis Health System have used a new, leading-edge stem cell therapy to promote the growth of bone tissue following the removal of cervical discs -- the cushions between the bones in the neck -- to relieve chronic, debilitating pain.

The procedure was performed by associate professors of neurosurgery Kee Kim and Rudolph Schrot. It used bone marrow-derived adult stem cells to promote the growth of the bone tissue essential for spinal fusion following surgery, as part of a nationwide, multicenter clinical trial of the therapy.

Removal of the cervical disc relieves pain by eliminating friction between the vertebrae and/or nerve compression. Spinal fusion is used following surgery for degenerative disc disease, where the cusioning cartilage has worn away, leaving bone to rub agains bone and herniated discs, where the discs pinch or compress nerves.

"We hope that this investigational procedure eventually will help those who undergo spinal fusion in the back as well as in the neck," said Kim, who also is chief of spinal neurosurgery at UC Davis. "And the knowledge gained about stem cells also will be applied in the near future to treat without surgery those suffering from back pain."

Millions of Americans are affected by spine diseases, with approximately 40 percent of all spinal fusion surgery performed for cervical spinal fusion. Some 230,000 patients are candidates for spinal fusion, with the numbers of potential patients increasing by 2 to 3 percent each year as the nation's population ages.

"This is an exciting clinical trial to test the ability of the bone-forming stem cells from healthy donors to help patients with spinal disease," said Jan Nolta, director of the UC Davis Institute for Regenerative Cures.

"For the past 50 years, bone marrow-derived stem cells have been used to rebuild patients' blood-forming systems. We know that subsets of stem cells from the marrow also can robustly build bone. Their use now to promote vertebral fusion is a new and extremely promising area of clinical study," she said.

The stem cell procedure at UC Davis took place early in August. The patient was a 53-year-old male from the Sacramento region with degenerative disc disease.

In the surgery, called an anterior cervical discectomy, a cervical disc or multiple discs are removed via an incision in the front of the neck. The investigational stem cell therapy then is applied to promote fusion of the vertebrae across the space created by the disc removal.

The stem cells are derived from a healthy single adult donor's bone marrow, and thus are very homogenous, Kim said. They are grown in culture to high concentration with minimal chance for rejection by the recipient, he said.

Adequate spinal fusion fails to occur in 8 to 35 percent or more of patients, and persistent pain occurs in up to 60 percent of patients with fusion failure, which often necessitates additional surgery.

"A lack of effective new bone growth after spine fusion surgery can be a significant problem, especially in surgeries involving multiple spinal segments," said Schrot, co-principal investigator for the study. "This new technology may help patients grow new bone, and it avoids harvesting a bone graft from the patient's own hip or using bone from a deceased donor."

Current methods of promoting spinal fusion include implanting bone tissue from the patient's hip or a cadaver to encourage bone regrowth as well as implanting bone growth-inducing proteins. However, the Food and Drug Administration has not approved the use of bone morphogenetic proteins for cervical spinal fusion. Their use has been associated with life-threatening complications, particularly in the neck.

The leading-edge stem cell procedure is part of a prospective, randomized, single-blinded controlled study to evaluate the safety and preliminary efficacy of an investigational therapy: modified bone marrow-derived stem cells combined with the use of a delivery device as an alternative to promote and maintain spinal fusion.

The study includes 10 investigational centers nationwide. The UC Davis Department of Neurological Surgery anticipates enrolling up to 10 study participants who will be treated with the stem cell therapy and followed for 36 months after their surgeries. A total of 24 participants will be enrolled nationwide.

The study is one of several clinical trials under way in the UC Davis Spine Center and led by Kim. He anticipates launching a clinical trial soon to study the safety of injecting stem cells into disc tissue to repair degenerated discs.

The current study is sponsored by Mesoblast, Ltd., of Melbourne, Australia, which is developing adult universal-donor stem cell products built upon the discovery of adult-derived mesenchymal precursor cells. Kim and Schrot will not be compensated for their participation in the study.

UC Davis Health System is advancing the health of patients everywhere by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 645-bed acute-care teaching hospital, an 800-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Phyllis Brown | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>