Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The STING of radiation

21.11.2014

Ludwig researchers reveal the molecular mechanisms by which the immune system is activated against tumors treated with radiation

A team of researchers led by Ludwig Chicago's Yang-Xin Fu and Ralph Weichselbaum has uncovered the primary signaling mechanisms and cellular interactions that drive immune responses against tumors treated with radiotherapy. Published in the current issue of Immunity, their study suggests novel strategies for boosting the effectiveness of radiotherapy, and for combining it with therapies that harness the immune system to treat cancer.

"Much of the conversation about the mechanisms by which radiation kills cancer cells has historically focused on the damage it does to DNA," says Weichselbaum, co-director of the Ludwig Center at the University of Chicago. "But it has recently become increasingly clear that the immune system plays an important--perhaps central--role in destroying tumors subjected to radiotherapy. Our study shows how radiation, DNA damage and the immune response that follows are linked."

Fu, Weichselbaum and their colleagues report that dendritic cells--among the immune system's primary reconnaissance forces--play a central role in the phenomenon. Through studies conducted in mouse models and cell cultures, they show that a protein within these cells named STING is key to activating the immune response to irradiated tumors. STING links the detection of small fragments of DNA to their production of an immune factor known as interferon-β (IFN-β). This factor boosts the ability of dendritic cells to activate the immune system's killer T cells, which destroy cancer cells.

Dendritic cells cruise the body looking for signs of infection or disease, using a variety of biochemical sensors that recognize general molecular patterns associated with different types of pathogens. One such detector, an enzyme known as cGAS, is activated by fragments of double-stranded DNA. cGas is a sensor of viral DNA that also senses damaged DNA from irradiated cells, thereby drawing the immune system into the host response to anti-tumor radiation.

The researchers show that cGAS in dendritic cells gets activated by such DNA fragments--an event that in turn switches on STING. This initiates a cascade of biochemical signals that culminates in the production of IFN-β, which promotes the activation of killer T cells by dendritic cells.

"This seems to be a fairly specific response in the context of radiation," says Weichselbaum. "If you knock out the STING gene in mice, their tumor growth is similar to that of normal mice. But, in the knock-out mice, the tumors are far more resistant to radiation than the tumors of control mice.

The team's experiments show that the dendritic cells from these STING knock-out mice fail to activate killer T cells following tumor irradiation. That capability, they find, can be restored by the addition of IFN-β.

Similarly, dendritic cells from mice whose cGAS genes were shut down or knocked out also failed to activate anti-tumor T cells. The cells regained that ability when given a dose of the molecules produced by cGAS that switch on STING signaling. Importantly, when those STING-activating molecules were injected into the tumors of normal mice, the tumors became very sensitive to radiation.

"These findings could open the door to improving cancer therapy," says Weichselbaum. "Drugs that activate STING signaling or the induction of IFN-β could be used to boost the effects of radiotherapy on tumors. Those effects might be observed in chemotherapy as well, since it too causes significant DNA damage."

In the longer term, says Weichselbaum, such molecules could be combined with existing killer T cell-boosting immunotherapies or cancer vaccines and radiation treatment to generate potent, systemic immune responses against metastatic cancers. He and his colleagues will be assessing these possibilities in mice.

This study was supported by the US National Institutes of Health, Ludwig Cancer Research and The Foglia Foundation.

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists with a 40-year legacy of pioneering cancer discoveries. Ludwig combines basic research with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested more than $2.5 billion in life-changing cancer research through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers.

For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-646-371-7394.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>