Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Test to improve peanut allergy diagnosis

Researchers from the Murdoch Childrens Research Institute and the University of Melbourne have identified a new way to accurately test for peanut allergy.

It is hoped the test will be more cost effective and convenient than standard approaches and minimise over-diagnosis of peanut allergy in the community.

Currently, an oral food challenge is the standard for diagnosing peanut allergy, and while an oral food challenge is definitive in diagnosing patients, it is time-consuming, costly and patients risk severe reactions such as anaphylaxis.

The new test researchers have identified uses part of the peanut protein called ‘Arah2’ and involves a two-step screening process. Researchers found they could perform a blood test, followed by the Arah2 test, which was more accurate and highly predictive than using one of the tests alone. They found the two step testing process reduced the need for oral food challenges by four-fold.

Co-lead researcher, Thanh Dang, a University of Melbourne PhD student based at the Murdoch Childrens Research Institute, said the new test has many benefits.

“By reducing the number of oral food challenges, this helps prevent many peanut allergics undertaking the unnecessary risks involved.”

Associate Professor Katie Allen said the new test could reduce the burden on clinicians and the health care system.

“Due to the rapid increase in rates of sensitisation to foods, allergy services are overwhelmed, and food challenge tests might be difficult to access. This method would help alleviate the current strain and demand on clinical allergy services, with the allergy patient waiting times in excess of 18 months in many centres in Australia,” she said. 

Researchers say the test would also help minimise over-diagnosis, and would reduce the number of patients requiring referral to specialist services for confirmation of a food allergy, by using oral food challenges.

Patients would simply need to visit a GP rather than require a referral to a specialist allergy clinic.

“Due to the long wait times for specialist’s clinics, many clinicians are faced with the difficult task of having to assess the presence of food allergy based solely on a positive skin prick test or other available tests and must err on the side of caution and accept a diagnosis of ‘possible’ food allergy in these situations,” Dr Allen said

“This approach can lead to over diagnosis of peanut allergy in the community and a potentially unnecessary burden on the health care system,” she said.

Diagnosis of peanut allergy is relatively straightforward when there is an obvious history of clinical reaction to peanut ingestion. However, diagnosis can be more complicated in cases in which the clinical history is not clear or in children who have not yet been exposed to a food.

Researchers say the ‘Arah2’ twostep process can be used in children with high risk of food allergy, such as those with eczema and other food allergies and for those who haven’t eaten peanuts but have a strong family history of food allergy.

The study is published in the Journal of Allergy and Clinical Immunology.
More information:
Rebecca Scott,
University of Melbourne
Tel: 61383440181
E: rebeccas@

Rebecca Scott | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>