Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TB vaccine candidate shows early promise

05.09.2011
Researchers at Albert Einstein College of Medicine of Yeshiva University report in the September 4 online edition of Nature Medicine that they have developed a tuberculosis (TB) vaccine candidate that proved both potent and safe in animal studies.

According to the World Health Organization, TB kills an estimated 1.7 million people each year and infects one out of three people around the globe. With drug-resistant strains spreading, a vaccine for preventing TB is urgently needed.

"Producing effective TB vaccines requires a better understanding of the mechanisms used by Mycobacterium tuberculosis [the bacterial species that causes TB] to evade the body's immune responses," said senior author William Jacobs, Jr., Ph.D., professor of microbiology & immunology and of genetics at Einstein and a Howard Hughes Medical Institute investigator. He notes that the only currently used vaccine, the Bacille Calmette-Gu¨¦rin (BCG) vaccine, has been notoriously inconsistent in protecting against TB.

To determine how M. tuberculosis outwits the immune response, Dr. Jacobs and his colleagues worked with a closely related species known as Mycobacterium smegmatis that is lethal to mice at high doses but does not harm people. The researchers created a version of M. smegmatis lacking a set of genes, known as ESX-3, considered crucial for evading host immunity. When high doses of the altered bacteria were infused into mice, it became clear that bacteria lacking the ESX-3genes could no longer evade their hosts' immune system: the mice controlled and cleared the infection through a robust T-cell response¡ªthe same response a successful TB vaccine would elicit.

Unfortunately, Dr. Jacobs found that removing the same set of genes from M. tuberculosis killed the bacterium©¤which meant M. tuberculosis could not be manipulated in this way to make a vaccine. But Dr. Jacobs and his colleagues found a way around this stumbling block. They took the M. smegmatis bacteria lacking ESX-3 and inserted the analogous set of M. tuberculosis ESX-3 genes. These M. smegmatis bacteria were then infused into mice, which once again fought off the infection. And eight weeks later, when the mice were challenged with high doses of M. tuberculosis¡ªwhich kills mice as well as people¡ªthese "vaccinated" mice lived much longer than control mice: an average survival time of 135 days vs. 54 days.

Just as impressive, said Dr. Jacobs, was the markedly reduced level of TB bacteria found in the animals' tissues. "Most notably," he said, "those vaccinated animals that survived for more than 200 days had livers that were completely clear of TB bacteria, and nobody has ever seen that before."

Dr. Jacobs cautioned that only about one in five mice showed this robust response¡ªindicating that the vaccine must be improved before it can be considered sufficiently effective. "We don't even know yet if it will work in humans, but it's certainly a significant step in efforts to create a better TB vaccine," he said.

Aeras, a Rockville, MD-based non-profit development partnership dedicated to preventing TB, has licensed the technology described in this study and is using it to develop a new TB vaccine. The technology could also provide the basis for vaccines that eliminate leprosy and other virulent mycobacteria from infected tissues.

The group's paper is titled "A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against M. tuberculosis." Other Einstein researchers involved in the study were lead author Kari Sweeney, Ph.D.; Dee Dao, Ph.D.; Michael Goldberg, M.S.; Tsungda Hsu, Ph.D.; Manjunatha Venkataswamy, Ph.D.; Rani Sellers, Ph.D., DVM; Paras Jain, Ph.D.; Bing Chen, M.D.; Mei Chen; John Kim, Regy Lukose, John Chan, M.D.; and Steven Porcelli, M.D.. Diane Ordway, Ph.D., and Ian Orme, Ph.D., of Colorado State University, Fort Collins, CO were also co-authors of the study. The research was funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. Dr. Jacobs' research is also funded by the Howard Hughes Medical Institute.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2010, Einstein received nearly $200 million in support from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its extensive affiliation network with five medical centers, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu
http://www.who.int/mediacentre/factsheets/fs104/en/

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>