Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TB vaccine candidate shows early promise

05.09.2011
Researchers at Albert Einstein College of Medicine of Yeshiva University report in the September 4 online edition of Nature Medicine that they have developed a tuberculosis (TB) vaccine candidate that proved both potent and safe in animal studies.

According to the World Health Organization, TB kills an estimated 1.7 million people each year and infects one out of three people around the globe. With drug-resistant strains spreading, a vaccine for preventing TB is urgently needed.

"Producing effective TB vaccines requires a better understanding of the mechanisms used by Mycobacterium tuberculosis [the bacterial species that causes TB] to evade the body's immune responses," said senior author William Jacobs, Jr., Ph.D., professor of microbiology & immunology and of genetics at Einstein and a Howard Hughes Medical Institute investigator. He notes that the only currently used vaccine, the Bacille Calmette-Gu¨¦rin (BCG) vaccine, has been notoriously inconsistent in protecting against TB.

To determine how M. tuberculosis outwits the immune response, Dr. Jacobs and his colleagues worked with a closely related species known as Mycobacterium smegmatis that is lethal to mice at high doses but does not harm people. The researchers created a version of M. smegmatis lacking a set of genes, known as ESX-3, considered crucial for evading host immunity. When high doses of the altered bacteria were infused into mice, it became clear that bacteria lacking the ESX-3genes could no longer evade their hosts' immune system: the mice controlled and cleared the infection through a robust T-cell response¡ªthe same response a successful TB vaccine would elicit.

Unfortunately, Dr. Jacobs found that removing the same set of genes from M. tuberculosis killed the bacterium©¤which meant M. tuberculosis could not be manipulated in this way to make a vaccine. But Dr. Jacobs and his colleagues found a way around this stumbling block. They took the M. smegmatis bacteria lacking ESX-3 and inserted the analogous set of M. tuberculosis ESX-3 genes. These M. smegmatis bacteria were then infused into mice, which once again fought off the infection. And eight weeks later, when the mice were challenged with high doses of M. tuberculosis¡ªwhich kills mice as well as people¡ªthese "vaccinated" mice lived much longer than control mice: an average survival time of 135 days vs. 54 days.

Just as impressive, said Dr. Jacobs, was the markedly reduced level of TB bacteria found in the animals' tissues. "Most notably," he said, "those vaccinated animals that survived for more than 200 days had livers that were completely clear of TB bacteria, and nobody has ever seen that before."

Dr. Jacobs cautioned that only about one in five mice showed this robust response¡ªindicating that the vaccine must be improved before it can be considered sufficiently effective. "We don't even know yet if it will work in humans, but it's certainly a significant step in efforts to create a better TB vaccine," he said.

Aeras, a Rockville, MD-based non-profit development partnership dedicated to preventing TB, has licensed the technology described in this study and is using it to develop a new TB vaccine. The technology could also provide the basis for vaccines that eliminate leprosy and other virulent mycobacteria from infected tissues.

The group's paper is titled "A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against M. tuberculosis." Other Einstein researchers involved in the study were lead author Kari Sweeney, Ph.D.; Dee Dao, Ph.D.; Michael Goldberg, M.S.; Tsungda Hsu, Ph.D.; Manjunatha Venkataswamy, Ph.D.; Rani Sellers, Ph.D., DVM; Paras Jain, Ph.D.; Bing Chen, M.D.; Mei Chen; John Kim, Regy Lukose, John Chan, M.D.; and Steven Porcelli, M.D.. Diane Ordway, Ph.D., and Ian Orme, Ph.D., of Colorado State University, Fort Collins, CO were also co-authors of the study. The research was funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. Dr. Jacobs' research is also funded by the Howard Hughes Medical Institute.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2010, Einstein received nearly $200 million in support from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its extensive affiliation network with five medical centers, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu
http://www.who.int/mediacentre/factsheets/fs104/en/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>