Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study could aid development of new drugs to treat gout

20.03.2013
Findings from a Loyola University Chicago Stritch School of Medicine study could lead to the development of new drugs to treat gout.

The study, led by Liang Qiao, MD, and his colleagues and collaborators, was published March 19 in the journal Nature Communications.

Gout is caused by a buildup of uric acid around joints, typically the big toe, knee or ankles. The immune system revs up to attack uric acid salt crystals, and this immune response causes painful inflammation.

The innate immune response is mainly activated by calcium that enters a macrophage immune cell through an opening called the calcium channel. There are several types of calcium channels. Researchers found that a particular type of calcium channel, called TRPM2, is responsible for initiating the immune response. (TRPM2 stands for transient receptor potential melastatin 2.)

In lab mice, study collaborators from Japan knocked out a gene that is responsible for this calcium channel. Qiao's team then exposed these "knockout" mice and a comparison group of normal mice to uric acid salt crystals and to a liposome, a compound that also causes inflammation. They found that inflammation was significantly lower in the knockout mice that lacked the TRPM2 calcium channel. They therefore concluded that disabling the TRPM2 calcium channel could be key to reducing painful inflammation from gout.

The next step will be to design a compound that would block the TRPM2 calcium channel, and then test how well this compound reduces inflammation in an animal model.

The study's findings might also apply to Alzheimer's disease and arteriosclerosis (hardening of the arteries). These two diseases, like gout, have been linked to inflammation. And it is possible that the TRPM2 calcium channel may be key to initiating the inflammatory response in these two diseases as well. But this has not been proven yet, Qiao said.

The study also could aid in the development of new vaccines. Researchers elsewhere are studying whether liposomes could serve as more effective adjuvants in new vaccines. (An adjuvant is the component in a vaccine that stimulates the immune system to attack a pathogen such as a virus or bacterium). The Loyola study found that only liposomes with either a positive or a negative electric charge are effective in stimulating the immune system.

Liposomes with a neutral charge did not stimulate the immune system.

Qiao, senior author of the study, is a professor in the Department of Microbiology and Immunology at Loyola University Chicago Stritch School of Medicine. Co-authors of the study are Zhenyu Zhong (first author, significant contributor), Yougang Zhai, Shuang Liang and Renzhi Han, all of Loyola University Chicago; Yasou Mori of Kyoto University in Japan; and Fayyaz S. Sutterwala of the University of Iowa.

The study was supported by grants from the National Institutes of Health, American Heart Association and Muscular Dystrophy Association.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>