Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy for mismatched stem cell transplants triggers protection against graft-vs.-host disease

09.10.2009
A new technique being tested in stem-cell transplants from imperfectly matched donors has revealed a striking, unforeseen response that can suppress graft-versus-host disease, a common and dangerous complication of mismatched transplants, report scientists from Dana-Farber Cancer Institute.

Analysis of blood samples from a small number of clinical trial patients showed that the novel method -- which inactivates specific immune cells from the donor that would attack the recipient's body -- also unleashes a surge of T-cells that further dampen the immune reaction.

The previously unrecognized specificity of these regulatory T-cells (also called Tregs) helps explain why the patients treated with the new strategy -- known as "co-stimulatory blockade" -- have shown a gratifyingly low level of graft-vs-host disease, according to the report published online by the new journal Science Translational Medicine.

The findings also suggest that optimizing the activity of Tregs in this manner might prove valuable in transplants of kidneys and other solid organs, as well as in treating autoimmune disease, say the scientists, led by Eva Guinan, MD, senior author, of Dana-Farber and Children's Hospital Boston, and Jeff Davies, MD, PhD, first author, of Dana-Farber. Both are also on the Harvard Medical School faculty.

The innovative method for improving mismatched bone-marrow and stem-cell transplants was first described clinically 10 years ago in the New England Journal of Medicine by Guinan, Lee Nadler, MD, also at Dana-Farber and a co-author on the new publication, and others. They employed a technique called "co-stimulatory blockade" to prevent certain T-cells in the donor material from recognizing and attacking cells in the patient's body, causing graft-vs-host inflammatory reactions that can affect the gastrointestinal system, skin, and other organs. The need for techniques that can reduce complications in mismatched transplants is great; the odds of a patient having a perfectly matched sibling for a donor are only about 25 percent.

"Originally we thought that using this method to specifically block the harmful response by donor T-cells explained the decrease in graft-vs-host disease and the rapid recovery of immune function we have seen in the clinical trials," said Guinan. "Now we learn that there is another powerful mechanism that is induced -- the generation and rapid expansion of Treg cells in the three months following the transplant."

Regulatory T-cells are a special population of T-cells that suppress immunity. They have two important functions: Turning off immune reactions following a successful defense against infectious organisms, and preventing immune cells from attacking the body's own tissues, which are identified by distinctive "self-antigen" markers.

In the past five years or so, scientists have used new tools to study Tregs and consider ways they could be harnessed for therapy in transplantation and autoimmune disease. In 2008, Davies and Guinan reported low levels of graft-vs-host disease in a small number of mismatched transplants using co-stimulatory blockade, which not only neutralized the T-cells that cause the harmful graft-vs-host response but also led to rapid reconstitution of the patients' bone marrow.

The researchers then designed experiments to learn more molecular details about how the blockade strategy had reduced graft-vs-host complications. Based on few reports in the literature, "We wondered whether Tregs were playing an additional role," said Davies.

Davies analyzed frozen blood samples taken from five patients and donors at various intervals after the transplants. The analysis showed that during the first three months, the level of Tregs in the patients rapidly rose to very high levels, which helped explain why the recipients experienced only mild graft-vs-host symptoms. The Tregs, they confirmed, were generated from the donated T-cells – not remnants of the recipient's immune system.

"We found there was something about co-stimulatory blockade that caused this rapid expansion of Tregs," said Davies, adding that further studies are exploring this question.

Importantly, the researchers noted, the Tregs acted in a highly specific fashion: They turned off only the donor T-cells that would have triggered the immune attack on the recipient's tissues -- other T-cells that help the patients fight off infections were spared. This specificity appears to have developed in the recipient's body, where the Tregs were "educated" to respond only to a harmful T-cell reaction.

As a result, said Guinan, this technique "creates a good balance of effects -- inactivating the T-cells that cause graft-vs-host disease (GVHD), revving up the Tregs to turn off any incipient GVHD, while bringing about a rapid reconstitution of the recipient's immune system."

The scientists expect the new findings to influence the design of further clinical tests of the co-stimulatory blockade technique. And, they said, it opens a window on other potential applications of co-stimulatory blockade, which is already being used clinically to treat rheumatoid arthritis (an autoimmune disease) and is being tested in mismatched kidney transplants.

Guinan is the associate director of the Center for Clinical and Translational Research at Dana-Farber and an associate professor of pediatrics at Harvard Medical School.

The research was funded by grants from the National Institutes of Health, the Leukemia & Lymphoma Society, and the American Society of Blood and Marrow Transplantation.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>