Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strategy for mismatched stem cell transplants triggers protection against graft-vs.-host disease

A new technique being tested in stem-cell transplants from imperfectly matched donors has revealed a striking, unforeseen response that can suppress graft-versus-host disease, a common and dangerous complication of mismatched transplants, report scientists from Dana-Farber Cancer Institute.

Analysis of blood samples from a small number of clinical trial patients showed that the novel method -- which inactivates specific immune cells from the donor that would attack the recipient's body -- also unleashes a surge of T-cells that further dampen the immune reaction.

The previously unrecognized specificity of these regulatory T-cells (also called Tregs) helps explain why the patients treated with the new strategy -- known as "co-stimulatory blockade" -- have shown a gratifyingly low level of graft-vs-host disease, according to the report published online by the new journal Science Translational Medicine.

The findings also suggest that optimizing the activity of Tregs in this manner might prove valuable in transplants of kidneys and other solid organs, as well as in treating autoimmune disease, say the scientists, led by Eva Guinan, MD, senior author, of Dana-Farber and Children's Hospital Boston, and Jeff Davies, MD, PhD, first author, of Dana-Farber. Both are also on the Harvard Medical School faculty.

The innovative method for improving mismatched bone-marrow and stem-cell transplants was first described clinically 10 years ago in the New England Journal of Medicine by Guinan, Lee Nadler, MD, also at Dana-Farber and a co-author on the new publication, and others. They employed a technique called "co-stimulatory blockade" to prevent certain T-cells in the donor material from recognizing and attacking cells in the patient's body, causing graft-vs-host inflammatory reactions that can affect the gastrointestinal system, skin, and other organs. The need for techniques that can reduce complications in mismatched transplants is great; the odds of a patient having a perfectly matched sibling for a donor are only about 25 percent.

"Originally we thought that using this method to specifically block the harmful response by donor T-cells explained the decrease in graft-vs-host disease and the rapid recovery of immune function we have seen in the clinical trials," said Guinan. "Now we learn that there is another powerful mechanism that is induced -- the generation and rapid expansion of Treg cells in the three months following the transplant."

Regulatory T-cells are a special population of T-cells that suppress immunity. They have two important functions: Turning off immune reactions following a successful defense against infectious organisms, and preventing immune cells from attacking the body's own tissues, which are identified by distinctive "self-antigen" markers.

In the past five years or so, scientists have used new tools to study Tregs and consider ways they could be harnessed for therapy in transplantation and autoimmune disease. In 2008, Davies and Guinan reported low levels of graft-vs-host disease in a small number of mismatched transplants using co-stimulatory blockade, which not only neutralized the T-cells that cause the harmful graft-vs-host response but also led to rapid reconstitution of the patients' bone marrow.

The researchers then designed experiments to learn more molecular details about how the blockade strategy had reduced graft-vs-host complications. Based on few reports in the literature, "We wondered whether Tregs were playing an additional role," said Davies.

Davies analyzed frozen blood samples taken from five patients and donors at various intervals after the transplants. The analysis showed that during the first three months, the level of Tregs in the patients rapidly rose to very high levels, which helped explain why the recipients experienced only mild graft-vs-host symptoms. The Tregs, they confirmed, were generated from the donated T-cells – not remnants of the recipient's immune system.

"We found there was something about co-stimulatory blockade that caused this rapid expansion of Tregs," said Davies, adding that further studies are exploring this question.

Importantly, the researchers noted, the Tregs acted in a highly specific fashion: They turned off only the donor T-cells that would have triggered the immune attack on the recipient's tissues -- other T-cells that help the patients fight off infections were spared. This specificity appears to have developed in the recipient's body, where the Tregs were "educated" to respond only to a harmful T-cell reaction.

As a result, said Guinan, this technique "creates a good balance of effects -- inactivating the T-cells that cause graft-vs-host disease (GVHD), revving up the Tregs to turn off any incipient GVHD, while bringing about a rapid reconstitution of the recipient's immune system."

The scientists expect the new findings to influence the design of further clinical tests of the co-stimulatory blockade technique. And, they said, it opens a window on other potential applications of co-stimulatory blockade, which is already being used clinically to treat rheumatoid arthritis (an autoimmune disease) and is being tested in mismatched kidney transplants.

Guinan is the associate director of the Center for Clinical and Translational Research at Dana-Farber and an associate professor of pediatrics at Harvard Medical School.

The research was funded by grants from the National Institutes of Health, the Leukemia & Lymphoma Society, and the American Society of Blood and Marrow Transplantation.

Dana-Farber Cancer Institute ( is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>