Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy for mismatched stem cell transplants triggers protection against graft-vs.-host disease

09.10.2009
A new technique being tested in stem-cell transplants from imperfectly matched donors has revealed a striking, unforeseen response that can suppress graft-versus-host disease, a common and dangerous complication of mismatched transplants, report scientists from Dana-Farber Cancer Institute.

Analysis of blood samples from a small number of clinical trial patients showed that the novel method -- which inactivates specific immune cells from the donor that would attack the recipient's body -- also unleashes a surge of T-cells that further dampen the immune reaction.

The previously unrecognized specificity of these regulatory T-cells (also called Tregs) helps explain why the patients treated with the new strategy -- known as "co-stimulatory blockade" -- have shown a gratifyingly low level of graft-vs-host disease, according to the report published online by the new journal Science Translational Medicine.

The findings also suggest that optimizing the activity of Tregs in this manner might prove valuable in transplants of kidneys and other solid organs, as well as in treating autoimmune disease, say the scientists, led by Eva Guinan, MD, senior author, of Dana-Farber and Children's Hospital Boston, and Jeff Davies, MD, PhD, first author, of Dana-Farber. Both are also on the Harvard Medical School faculty.

The innovative method for improving mismatched bone-marrow and stem-cell transplants was first described clinically 10 years ago in the New England Journal of Medicine by Guinan, Lee Nadler, MD, also at Dana-Farber and a co-author on the new publication, and others. They employed a technique called "co-stimulatory blockade" to prevent certain T-cells in the donor material from recognizing and attacking cells in the patient's body, causing graft-vs-host inflammatory reactions that can affect the gastrointestinal system, skin, and other organs. The need for techniques that can reduce complications in mismatched transplants is great; the odds of a patient having a perfectly matched sibling for a donor are only about 25 percent.

"Originally we thought that using this method to specifically block the harmful response by donor T-cells explained the decrease in graft-vs-host disease and the rapid recovery of immune function we have seen in the clinical trials," said Guinan. "Now we learn that there is another powerful mechanism that is induced -- the generation and rapid expansion of Treg cells in the three months following the transplant."

Regulatory T-cells are a special population of T-cells that suppress immunity. They have two important functions: Turning off immune reactions following a successful defense against infectious organisms, and preventing immune cells from attacking the body's own tissues, which are identified by distinctive "self-antigen" markers.

In the past five years or so, scientists have used new tools to study Tregs and consider ways they could be harnessed for therapy in transplantation and autoimmune disease. In 2008, Davies and Guinan reported low levels of graft-vs-host disease in a small number of mismatched transplants using co-stimulatory blockade, which not only neutralized the T-cells that cause the harmful graft-vs-host response but also led to rapid reconstitution of the patients' bone marrow.

The researchers then designed experiments to learn more molecular details about how the blockade strategy had reduced graft-vs-host complications. Based on few reports in the literature, "We wondered whether Tregs were playing an additional role," said Davies.

Davies analyzed frozen blood samples taken from five patients and donors at various intervals after the transplants. The analysis showed that during the first three months, the level of Tregs in the patients rapidly rose to very high levels, which helped explain why the recipients experienced only mild graft-vs-host symptoms. The Tregs, they confirmed, were generated from the donated T-cells – not remnants of the recipient's immune system.

"We found there was something about co-stimulatory blockade that caused this rapid expansion of Tregs," said Davies, adding that further studies are exploring this question.

Importantly, the researchers noted, the Tregs acted in a highly specific fashion: They turned off only the donor T-cells that would have triggered the immune attack on the recipient's tissues -- other T-cells that help the patients fight off infections were spared. This specificity appears to have developed in the recipient's body, where the Tregs were "educated" to respond only to a harmful T-cell reaction.

As a result, said Guinan, this technique "creates a good balance of effects -- inactivating the T-cells that cause graft-vs-host disease (GVHD), revving up the Tregs to turn off any incipient GVHD, while bringing about a rapid reconstitution of the recipient's immune system."

The scientists expect the new findings to influence the design of further clinical tests of the co-stimulatory blockade technique. And, they said, it opens a window on other potential applications of co-stimulatory blockade, which is already being used clinically to treat rheumatoid arthritis (an autoimmune disease) and is being tested in mismatched kidney transplants.

Guinan is the associate director of the Center for Clinical and Translational Research at Dana-Farber and an associate professor of pediatrics at Harvard Medical School.

The research was funded by grants from the National Institutes of Health, the Leukemia & Lymphoma Society, and the American Society of Blood and Marrow Transplantation.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>