Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy for mismatched stem cell transplants triggers protection against graft-vs.-host disease

09.10.2009
A new technique being tested in stem-cell transplants from imperfectly matched donors has revealed a striking, unforeseen response that can suppress graft-versus-host disease, a common and dangerous complication of mismatched transplants, report scientists from Dana-Farber Cancer Institute.

Analysis of blood samples from a small number of clinical trial patients showed that the novel method -- which inactivates specific immune cells from the donor that would attack the recipient's body -- also unleashes a surge of T-cells that further dampen the immune reaction.

The previously unrecognized specificity of these regulatory T-cells (also called Tregs) helps explain why the patients treated with the new strategy -- known as "co-stimulatory blockade" -- have shown a gratifyingly low level of graft-vs-host disease, according to the report published online by the new journal Science Translational Medicine.

The findings also suggest that optimizing the activity of Tregs in this manner might prove valuable in transplants of kidneys and other solid organs, as well as in treating autoimmune disease, say the scientists, led by Eva Guinan, MD, senior author, of Dana-Farber and Children's Hospital Boston, and Jeff Davies, MD, PhD, first author, of Dana-Farber. Both are also on the Harvard Medical School faculty.

The innovative method for improving mismatched bone-marrow and stem-cell transplants was first described clinically 10 years ago in the New England Journal of Medicine by Guinan, Lee Nadler, MD, also at Dana-Farber and a co-author on the new publication, and others. They employed a technique called "co-stimulatory blockade" to prevent certain T-cells in the donor material from recognizing and attacking cells in the patient's body, causing graft-vs-host inflammatory reactions that can affect the gastrointestinal system, skin, and other organs. The need for techniques that can reduce complications in mismatched transplants is great; the odds of a patient having a perfectly matched sibling for a donor are only about 25 percent.

"Originally we thought that using this method to specifically block the harmful response by donor T-cells explained the decrease in graft-vs-host disease and the rapid recovery of immune function we have seen in the clinical trials," said Guinan. "Now we learn that there is another powerful mechanism that is induced -- the generation and rapid expansion of Treg cells in the three months following the transplant."

Regulatory T-cells are a special population of T-cells that suppress immunity. They have two important functions: Turning off immune reactions following a successful defense against infectious organisms, and preventing immune cells from attacking the body's own tissues, which are identified by distinctive "self-antigen" markers.

In the past five years or so, scientists have used new tools to study Tregs and consider ways they could be harnessed for therapy in transplantation and autoimmune disease. In 2008, Davies and Guinan reported low levels of graft-vs-host disease in a small number of mismatched transplants using co-stimulatory blockade, which not only neutralized the T-cells that cause the harmful graft-vs-host response but also led to rapid reconstitution of the patients' bone marrow.

The researchers then designed experiments to learn more molecular details about how the blockade strategy had reduced graft-vs-host complications. Based on few reports in the literature, "We wondered whether Tregs were playing an additional role," said Davies.

Davies analyzed frozen blood samples taken from five patients and donors at various intervals after the transplants. The analysis showed that during the first three months, the level of Tregs in the patients rapidly rose to very high levels, which helped explain why the recipients experienced only mild graft-vs-host symptoms. The Tregs, they confirmed, were generated from the donated T-cells – not remnants of the recipient's immune system.

"We found there was something about co-stimulatory blockade that caused this rapid expansion of Tregs," said Davies, adding that further studies are exploring this question.

Importantly, the researchers noted, the Tregs acted in a highly specific fashion: They turned off only the donor T-cells that would have triggered the immune attack on the recipient's tissues -- other T-cells that help the patients fight off infections were spared. This specificity appears to have developed in the recipient's body, where the Tregs were "educated" to respond only to a harmful T-cell reaction.

As a result, said Guinan, this technique "creates a good balance of effects -- inactivating the T-cells that cause graft-vs-host disease (GVHD), revving up the Tregs to turn off any incipient GVHD, while bringing about a rapid reconstitution of the recipient's immune system."

The scientists expect the new findings to influence the design of further clinical tests of the co-stimulatory blockade technique. And, they said, it opens a window on other potential applications of co-stimulatory blockade, which is already being used clinically to treat rheumatoid arthritis (an autoimmune disease) and is being tested in mismatched kidney transplants.

Guinan is the associate director of the Center for Clinical and Translational Research at Dana-Farber and an associate professor of pediatrics at Harvard Medical School.

The research was funded by grants from the National Institutes of Health, the Leukemia & Lymphoma Society, and the American Society of Blood and Marrow Transplantation.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>