Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the mystery of an old diabetes drug that may reduce cancer risk

19.01.2012
Research opens exciting new avenues in cancer prevention

In 2005, news first broke that researchers in Scotland found unexpectedly low rates of cancer among diabetics taking metformin, a drug commonly prescribed to patients with Type II diabetes. Many follow-up studies reported similar findings, some suggesting as much as a 50-per-cent reduction in risk.

How could this anti-diabetic drug reduce the risk of developing cancer and what were the mechanisms involved?

In a paper published today in the journal Cancer Prevention Research, researchers from McGill University and the University of Montreal reported an unexpected finding: they learned that exposure to metformin reduces the cellular mutation rate and the accumulation of DNA damage. It is well known that such mutations are directly involved in carcinogenesis, but lowering cancer risk by inhibiting the mutation rate has never been shown to be feasible.

"It is remarkable that metformin, an inexpensive, off-patent, safe and widely used drug, has several biological actions that may result in reduced cancer risk – these latest findings suggest that it reduces mutation rate in somatic cells, providing an additional mechanism by which it could prevent cancer, explained Dr. Michael Pollak, professor in McGill's Departments of Medicine and Oncology, researcher at the Lady Davis Institute for Medical Research at the Jewish General Hospital and the study's director.

The study, carried out in collaboration with the laboratory of Dr. Gerardo Ferbeyre at Université de Montréal's Department of Biochemistry, suggests that metformin reduces DNA damage by reducing levels of reactive oxygen species (ROS). ROS are known to be DNA-damaging agents produced as by-products when cells generate energy from nutrients. This action appears to take place in mitochondria, the cellular organelles that produce energy in cells by "burning" nutrients. Past studies have identified the mitochondria as a site of action for metformin related to its anti-diabetic function, but those studies had not considered that the drug also acted here to reduce ROS production, thereby reducing the rate at which DNA damage accumulates. "We found that metformin did not act as a classic antioxidant," said Ferbeyre. "The drug seems to selectively prevent ROS production from altered mitochondria such as those found in cells with oncogenic mutations."

"This study opens an exciting new direction in cancer-prevention research," said Pollak. "This doesn't imply, however, that metformin is now ready to be widely used for cancer prevention. We do not yet know if the drug accumulates to sufficient concentrations in human tissues at risk for cancer, such as breast or colon, when taken at the usual doses used for diabetes treatment, nor do we know if the findings from the original studies showing reduced cancer risk, which were carried out in diabetics, also apply to people without diabetes. But the possibility of protecting DNA from oxidative damage by the use of a well-tolerated drug was not expected, and this topic now needs further study at many levels."

Allison Flynn | EurekAlert!
Further information:
http://www.mcgill.ca

Further reports about: DNA DNA damage Problem Solving cancer risk human tissue

More articles from Health and Medicine:

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>