Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the mystery of an old diabetes drug that may reduce cancer risk

19.01.2012
Research opens exciting new avenues in cancer prevention

In 2005, news first broke that researchers in Scotland found unexpectedly low rates of cancer among diabetics taking metformin, a drug commonly prescribed to patients with Type II diabetes. Many follow-up studies reported similar findings, some suggesting as much as a 50-per-cent reduction in risk.

How could this anti-diabetic drug reduce the risk of developing cancer and what were the mechanisms involved?

In a paper published today in the journal Cancer Prevention Research, researchers from McGill University and the University of Montreal reported an unexpected finding: they learned that exposure to metformin reduces the cellular mutation rate and the accumulation of DNA damage. It is well known that such mutations are directly involved in carcinogenesis, but lowering cancer risk by inhibiting the mutation rate has never been shown to be feasible.

"It is remarkable that metformin, an inexpensive, off-patent, safe and widely used drug, has several biological actions that may result in reduced cancer risk – these latest findings suggest that it reduces mutation rate in somatic cells, providing an additional mechanism by which it could prevent cancer, explained Dr. Michael Pollak, professor in McGill's Departments of Medicine and Oncology, researcher at the Lady Davis Institute for Medical Research at the Jewish General Hospital and the study's director.

The study, carried out in collaboration with the laboratory of Dr. Gerardo Ferbeyre at Université de Montréal's Department of Biochemistry, suggests that metformin reduces DNA damage by reducing levels of reactive oxygen species (ROS). ROS are known to be DNA-damaging agents produced as by-products when cells generate energy from nutrients. This action appears to take place in mitochondria, the cellular organelles that produce energy in cells by "burning" nutrients. Past studies have identified the mitochondria as a site of action for metformin related to its anti-diabetic function, but those studies had not considered that the drug also acted here to reduce ROS production, thereby reducing the rate at which DNA damage accumulates. "We found that metformin did not act as a classic antioxidant," said Ferbeyre. "The drug seems to selectively prevent ROS production from altered mitochondria such as those found in cells with oncogenic mutations."

"This study opens an exciting new direction in cancer-prevention research," said Pollak. "This doesn't imply, however, that metformin is now ready to be widely used for cancer prevention. We do not yet know if the drug accumulates to sufficient concentrations in human tissues at risk for cancer, such as breast or colon, when taken at the usual doses used for diabetes treatment, nor do we know if the findings from the original studies showing reduced cancer risk, which were carried out in diabetics, also apply to people without diabetes. But the possibility of protecting DNA from oxidative damage by the use of a well-tolerated drug was not expected, and this topic now needs further study at many levels."

Allison Flynn | EurekAlert!
Further information:
http://www.mcgill.ca

Further reports about: DNA DNA damage Problem Solving cancer risk human tissue

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>