Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small Spills at Gas Stations Could Cause Significant Public Health Risks Over Time


Soil and groundwater may be imperiled more than previously understood

A new study suggests that drops of fuel spilled at gas stations — which occur frequently with fill-ups — could cumulatively be causing long-term environmental damage to soil and groundwater in residential areas in close proximity to the stations.

Few studies have considered the potential environmental impact of routine gasoline spills and instead have focused on problems associated with large-scale leaks. Researchers with the Johns Hopkins Bloomberg School of Public Health, publishing online Sept. 19 in the Journal of Contaminant Hydrology, developed a mathematical model and conducted experiments suggesting these small spills may be a larger issue than previously thought.

"Gas station owners have worked very hard to prevent gasoline from leaking out of underground storage tanks,” says study leader Markus Hilpert, PhD, a senior scientist in the Department of Environmental Health Sciences in the Johns Hopkins Bloomberg School of Public Health. “But our research shows we should also be paying attention to the small spills that routinely occur when you refill your vehicle's tank.”

Over the lifespan of a gas station, Hilpert says, concrete pads underneath the pumps can accumulate significant amounts of gasoline, which can eventually penetrate the concrete and escape into underlying soil and groundwater, potentially impacting the health of those who use wells as a water source. Conservatively, the researchers estimate, roughly 1,500 liters of gasoline are spilled at a typical gas station each decade.

“Even if only a small percentage reaches the ground, this could be problematic because gasoline contains harmful chemicals including benzene, a known human carcinogen,” Hilpert says.
Hilpert and Patrick N. Breysse, PhD, a professor in the Department of Environmental Health Sciences, developed a mathematical model to measure the amount of gasoline that permeates through the concrete of the gas-dispensing stations and the amount of gasoline that vaporizes into the air.

The model demonstrates that spilled gasoline droplets remain on concrete surfaces for minutes or longer, and a significant fraction of spilled gasoline droplets infiltrate into the pavement, as concrete is not impervious.

“When gasoline spills onto concrete, the droplet will eventually disappear from the surface. If no stain is left behind, there has been a belief that no gasoline infiltrated the pavement, and all of it evaporated,” Hilpert says. “According to our laboratory-based research and supported by our mathematical model, this assumption is incorrect. Our experiments suggest that even the smallest gasoline spills can have a lasting impact.”

Since the health effects of living near gasoline stations have not been well studied, Breysse says there is an urgency to look more closely, especially since the new trend is to build larger filling stations with many more pumps. These stations continue to be located near residential areas where soil and groundwater could be affected.

“The environmental and public health impacts of chronic gasoline spills are poorly understood,” says Breysse. “Chronic gasoline spills could well become significant public health issues since the gas station industry is currently trending away from small-scale service stations that typically dispense around 100,000 gallons per month to high-volume retailers that dispense more than 10 times this amount."

“In a perfect world, it would be ideal to avoid chronic spills,” Hilpert says. “However, if these spills do occur, it is also important to prevent rainwater from flowing over the concrete pads underneath the pumps. Otherwise, storm runoff gets contaminated with benzene and other harmful chemicals and can infiltrate into adjacent soil patches or form stormwater that may end up in natural bodies of water.”

“Infiltration and Evaporation of Small Hydrocarbon Spills at Gas Stations” was written by Markus Hilpert and Patrick N. Breysse.

Contact Information

Nicole Hughes
Stephanie Desmon

Nicole Hughes | newswise
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>