Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Spills at Gas Stations Could Cause Significant Public Health Risks Over Time

09.10.2014

Soil and groundwater may be imperiled more than previously understood

A new study suggests that drops of fuel spilled at gas stations — which occur frequently with fill-ups — could cumulatively be causing long-term environmental damage to soil and groundwater in residential areas in close proximity to the stations.

Few studies have considered the potential environmental impact of routine gasoline spills and instead have focused on problems associated with large-scale leaks. Researchers with the Johns Hopkins Bloomberg School of Public Health, publishing online Sept. 19 in the Journal of Contaminant Hydrology, developed a mathematical model and conducted experiments suggesting these small spills may be a larger issue than previously thought.

"Gas station owners have worked very hard to prevent gasoline from leaking out of underground storage tanks,” says study leader Markus Hilpert, PhD, a senior scientist in the Department of Environmental Health Sciences in the Johns Hopkins Bloomberg School of Public Health. “But our research shows we should also be paying attention to the small spills that routinely occur when you refill your vehicle's tank.”

Over the lifespan of a gas station, Hilpert says, concrete pads underneath the pumps can accumulate significant amounts of gasoline, which can eventually penetrate the concrete and escape into underlying soil and groundwater, potentially impacting the health of those who use wells as a water source. Conservatively, the researchers estimate, roughly 1,500 liters of gasoline are spilled at a typical gas station each decade.

“Even if only a small percentage reaches the ground, this could be problematic because gasoline contains harmful chemicals including benzene, a known human carcinogen,” Hilpert says.
Hilpert and Patrick N. Breysse, PhD, a professor in the Department of Environmental Health Sciences, developed a mathematical model to measure the amount of gasoline that permeates through the concrete of the gas-dispensing stations and the amount of gasoline that vaporizes into the air.

The model demonstrates that spilled gasoline droplets remain on concrete surfaces for minutes or longer, and a significant fraction of spilled gasoline droplets infiltrate into the pavement, as concrete is not impervious.

“When gasoline spills onto concrete, the droplet will eventually disappear from the surface. If no stain is left behind, there has been a belief that no gasoline infiltrated the pavement, and all of it evaporated,” Hilpert says. “According to our laboratory-based research and supported by our mathematical model, this assumption is incorrect. Our experiments suggest that even the smallest gasoline spills can have a lasting impact.”

Since the health effects of living near gasoline stations have not been well studied, Breysse says there is an urgency to look more closely, especially since the new trend is to build larger filling stations with many more pumps. These stations continue to be located near residential areas where soil and groundwater could be affected.

“The environmental and public health impacts of chronic gasoline spills are poorly understood,” says Breysse. “Chronic gasoline spills could well become significant public health issues since the gas station industry is currently trending away from small-scale service stations that typically dispense around 100,000 gallons per month to high-volume retailers that dispense more than 10 times this amount."

“In a perfect world, it would be ideal to avoid chronic spills,” Hilpert says. “However, if these spills do occur, it is also important to prevent rainwater from flowing over the concrete pads underneath the pumps. Otherwise, storm runoff gets contaminated with benzene and other harmful chemicals and can infiltrate into adjacent soil patches or form stormwater that may end up in natural bodies of water.”

“Infiltration and Evaporation of Small Hydrocarbon Spills at Gas Stations” was written by Markus Hilpert and Patrick N. Breysse.

Contact Information

Nicole Hughes
443-287-2905; nhughes4@jhu.edu
Stephanie Desmon
410-955-7619; sdesmon1@jhu.edu

Nicole Hughes | newswise
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>