Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Severity of emphysema predicts mortality

18.01.2013
Severity of emphysema, as measured by computed tomography (CT), is a strong independent predictor of all-cause, cardiovascular, and respiratory mortality in ever-smokers with or without chronic obstructive pulmonary disease (COPD), according to a study from researchers in Norway. In patients with severe emphysema, airway wall thickness is also associated with mortality from respiratory causes.

"Ours is the first study to examine the relationship between degree of emphysema and mortality in a community-based sample and between airway wall thickness and mortality," said lead author Ane Johannessen, PhD, post-doctoral researcher at Haukeland University Hospital in Bergen, Norway. "Given the wide use of chest CT scans around the world, the predictive value of these measures on mortality risk is of substantial clinical importance."

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

The study included a community-based cohort of 947 ever-smokers with and without COPD who were followed for eight years. All subjects underwent spirometry and CT scanning. Degree of emphysema was categorized as low, medium, or high based on the percent of low attenuation areas (areas with lower density than normal) on CT. COPD was diagnosed by spirometric measurement of airway obstruction. Of the 947 patients, 462 had COPD.

During follow-up, four percent of the 568 subjects with a low degree of emphysema died, compared with 18 percent of the 190 patients with a medium degree of emphysema and 44 percent of the 189 patients with a high degree of emphysema.

After adjustment for sex, COPD status, age, body mass index, smoking and measures of lung function, survival in the low emphysema group was 19 months longer than survival in the middle and high emphysema groups for all-cause mortality. Compared with subjects in the low emphysema group, subjects with a high degree of emphysema had 33 months shorter survival for respiratory mortality and 37 months shorter survival for cardiovascular mortality.

Emphysema was a significant predictor of all cause-specific mortalities, with increasing emphysema levels predicting shorter survival. While airway wall thickness was not an independent predictor of mortality, increased airway wall thickness reduced survival time in patients with more severe emphysema.

"The relationship between emphysema levels and mortality we found can be used in the risk assessment of these patients," concluded Dr. Johannessen. "Accurately predicting mortality risk may help target patients for specific therapeutic interventions which may improve outcomes."

About the American Journal of Respiratory and Critical Care Medicine:

With an impact factor of 11.080, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:
http://www.thoracic.org

Further reports about: COPD CT scan Critical Care Medicine Medicine Respiratory Thoracic mortality risk

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>