Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Severity of emphysema predicts mortality

18.01.2013
Severity of emphysema, as measured by computed tomography (CT), is a strong independent predictor of all-cause, cardiovascular, and respiratory mortality in ever-smokers with or without chronic obstructive pulmonary disease (COPD), according to a study from researchers in Norway. In patients with severe emphysema, airway wall thickness is also associated with mortality from respiratory causes.

"Ours is the first study to examine the relationship between degree of emphysema and mortality in a community-based sample and between airway wall thickness and mortality," said lead author Ane Johannessen, PhD, post-doctoral researcher at Haukeland University Hospital in Bergen, Norway. "Given the wide use of chest CT scans around the world, the predictive value of these measures on mortality risk is of substantial clinical importance."

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

The study included a community-based cohort of 947 ever-smokers with and without COPD who were followed for eight years. All subjects underwent spirometry and CT scanning. Degree of emphysema was categorized as low, medium, or high based on the percent of low attenuation areas (areas with lower density than normal) on CT. COPD was diagnosed by spirometric measurement of airway obstruction. Of the 947 patients, 462 had COPD.

During follow-up, four percent of the 568 subjects with a low degree of emphysema died, compared with 18 percent of the 190 patients with a medium degree of emphysema and 44 percent of the 189 patients with a high degree of emphysema.

After adjustment for sex, COPD status, age, body mass index, smoking and measures of lung function, survival in the low emphysema group was 19 months longer than survival in the middle and high emphysema groups for all-cause mortality. Compared with subjects in the low emphysema group, subjects with a high degree of emphysema had 33 months shorter survival for respiratory mortality and 37 months shorter survival for cardiovascular mortality.

Emphysema was a significant predictor of all cause-specific mortalities, with increasing emphysema levels predicting shorter survival. While airway wall thickness was not an independent predictor of mortality, increased airway wall thickness reduced survival time in patients with more severe emphysema.

"The relationship between emphysema levels and mortality we found can be used in the risk assessment of these patients," concluded Dr. Johannessen. "Accurately predicting mortality risk may help target patients for specific therapeutic interventions which may improve outcomes."

About the American Journal of Respiratory and Critical Care Medicine:

With an impact factor of 11.080, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:
http://www.thoracic.org

Further reports about: COPD CT scan Critical Care Medicine Medicine Respiratory Thoracic mortality risk

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>