Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists find key culprits in lupus

02.07.2009
The more than 1.5 million Americans with systemic lupus erythematosus (or lupus) suffer from a variety of symptoms that flare and subside, often including painful or swollen joints, extreme fatigue, skin rashes, fever, and kidney problems. Researchers at The Scripps Research Institute have now identified the main trigger for the development of this disease.

Lupus is one of several autoimmune diseases in which the immune system turns against parts of the body, destroying the very cells and tissues it is meant to protect.

In a study published in the Early Edition of the Proceedings of the National Academy of Sciences (PNAS) the week of June 29, 2009, Scripps Research Professor of Immunology and Microbial Science Dwight Kono and colleagues demonstrate that three proteins, called Toll-like receptors (TLRs), are necessary for this autodestruction to occur. TLRs may thus provide effective targets for the development of new treatments for lupus, as well as other autoimmune diseases.

The Double-Edged Sword of Immunity

In response to infection, a healthy immune system produces antibodies—proteins that fight and destroy invading pathogens such as viruses, bacteria, and other foreign substances. But in lupus something goes awry with the chain of events leading to antibody production. As a result, the immune system produces "autoantibodies" against some of the body's own molecules, cells and tissues.

TLRs are proteins found in immune cells that normally help stimulate the initial response of the immune system to foreign pathogens. Humans have 10 different types of TLRs. Some of them sit on the surface of immune cells and seek out molecules that appear on the coating of bacteria and viruses. Other TLRs—TLR 3, TLR7, (TLR 8 in humans, but not mice), and TLR 9—reside inside immune cells, in a compartment known as the endolysosome, where bits of foreign substances usually end up.

When bacteria or viruses enter the body, some are engulfed by immune cells and degraded in the endolysosome. Inside this compartment, resident TLRs come across the bacterial and viral debris. These TLRs specifically detect the genetic material of pathogens—viral DNA, viral RNA, and bacterial DNA—and stimulate immune cells to produce antibodies against these molecules.

But the production of antibodies against foreign DNA and RNA seems to be particularly prone to error. The most common types of autoantibodies found in lupus patients are ones to the body's own genetic material—the DNA and RNA that resides inside the cell's command center, or nucleus. As a result, doctors often test for the presence of "antinuclear" antibodies to diagnose lupus.

"That's the Achilles heel," says Kono. "These endolysosomal TLRs are needed for viral and bacterial immunity, but they open the possibility of self reactivity."

Toll-Like Receptors and Lupus

Scientists don't quite know how antinuclear antibodies develop, but have suspected for some time that TLRs might be involved. By engineering mice that lack either TLR 7 or TLR9, scientists have gathered evidence that these TLRs may play a role in the disease.

"Earlier studies had strongly suggested that endolysosomal TLRs were important, but if you eliminate one or the other you do not get a huge effect," says Kono. "So we asked, 'What happens if you get rid of all the endolysosomal nucleic acid-sensing TLRs at once?'"

To answer this question, Kono and colleagues took advantage of strains of laboratory mice prone to lupus. These mice spontaneously develop many of the same signs and symptoms as humans with the disease. The next step was to eliminate TLR 3, TLR 7, and TLR 9 in these lupus-prone mice.

But how do you get rid of three proteins at once? Kono and colleagues knew that these TLRs need to be transported to the endolysosome to function. They also knew that one particular protein, called UNC-93B, produced by a gene called Unc93b1, serves as an essential "taxi" service. The UNC-93B protein attaches itself to TLR 3, TLR 7, and TLR 9 and facilitates their transport from the compartment in the cell where they are made to the endolysosome.

Using geneticists' tools of the trade, Kono and colleagues, engineered lupus-prone mice with an inactive Unc93b1 gene. Compared to lupus-prone mice with a functioning Unc93b1 gene, the mice with the Unc93b1 mutation produced fewer antinuclear antibodies and had fewer and less severe symptoms of lupus.

As a further test, Kono and colleagues treated the mutant mice with a substance that stimulates TLR 4—as TLR 4 stimulation is known to promote the production of autoantibodies. But even with TLR 4 stimulation, the mice lacking functioning TLR 3, TLR 7, and TLR 9 did not develop lupus.

"It seems like these three TLRs are absolutely required for optimal autoantibody production," says Kono. "This is an important finding that builds on results obtained by other groups."

The results "suggest that the three endosomal TLRs, or UNC-93B itself, might be good targets for therapy," says Kono, adding that more tests will be needed before these findings are translated into treatments for patients. "We are definitely getting closer to understanding the etiology of this autoimmune disease."

In addition to Kono, other co-authors of the article "Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus," include M. Katarina Haraldsson, Brian R. Lawson, K. Michael Pollard, Yi Ting Koh, Xin Du, Carrie N. Arnold, Roberto Baccala, Bruce Beutler, and Argyrios N. Theofilopoulos of The Scripps Research Institute, and Gregg J. Silverman of the University of California, San Diego.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>