Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists find key culprits in lupus

02.07.2009
The more than 1.5 million Americans with systemic lupus erythematosus (or lupus) suffer from a variety of symptoms that flare and subside, often including painful or swollen joints, extreme fatigue, skin rashes, fever, and kidney problems. Researchers at The Scripps Research Institute have now identified the main trigger for the development of this disease.

Lupus is one of several autoimmune diseases in which the immune system turns against parts of the body, destroying the very cells and tissues it is meant to protect.

In a study published in the Early Edition of the Proceedings of the National Academy of Sciences (PNAS) the week of June 29, 2009, Scripps Research Professor of Immunology and Microbial Science Dwight Kono and colleagues demonstrate that three proteins, called Toll-like receptors (TLRs), are necessary for this autodestruction to occur. TLRs may thus provide effective targets for the development of new treatments for lupus, as well as other autoimmune diseases.

The Double-Edged Sword of Immunity

In response to infection, a healthy immune system produces antibodies—proteins that fight and destroy invading pathogens such as viruses, bacteria, and other foreign substances. But in lupus something goes awry with the chain of events leading to antibody production. As a result, the immune system produces "autoantibodies" against some of the body's own molecules, cells and tissues.

TLRs are proteins found in immune cells that normally help stimulate the initial response of the immune system to foreign pathogens. Humans have 10 different types of TLRs. Some of them sit on the surface of immune cells and seek out molecules that appear on the coating of bacteria and viruses. Other TLRs—TLR 3, TLR7, (TLR 8 in humans, but not mice), and TLR 9—reside inside immune cells, in a compartment known as the endolysosome, where bits of foreign substances usually end up.

When bacteria or viruses enter the body, some are engulfed by immune cells and degraded in the endolysosome. Inside this compartment, resident TLRs come across the bacterial and viral debris. These TLRs specifically detect the genetic material of pathogens—viral DNA, viral RNA, and bacterial DNA—and stimulate immune cells to produce antibodies against these molecules.

But the production of antibodies against foreign DNA and RNA seems to be particularly prone to error. The most common types of autoantibodies found in lupus patients are ones to the body's own genetic material—the DNA and RNA that resides inside the cell's command center, or nucleus. As a result, doctors often test for the presence of "antinuclear" antibodies to diagnose lupus.

"That's the Achilles heel," says Kono. "These endolysosomal TLRs are needed for viral and bacterial immunity, but they open the possibility of self reactivity."

Toll-Like Receptors and Lupus

Scientists don't quite know how antinuclear antibodies develop, but have suspected for some time that TLRs might be involved. By engineering mice that lack either TLR 7 or TLR9, scientists have gathered evidence that these TLRs may play a role in the disease.

"Earlier studies had strongly suggested that endolysosomal TLRs were important, but if you eliminate one or the other you do not get a huge effect," says Kono. "So we asked, 'What happens if you get rid of all the endolysosomal nucleic acid-sensing TLRs at once?'"

To answer this question, Kono and colleagues took advantage of strains of laboratory mice prone to lupus. These mice spontaneously develop many of the same signs and symptoms as humans with the disease. The next step was to eliminate TLR 3, TLR 7, and TLR 9 in these lupus-prone mice.

But how do you get rid of three proteins at once? Kono and colleagues knew that these TLRs need to be transported to the endolysosome to function. They also knew that one particular protein, called UNC-93B, produced by a gene called Unc93b1, serves as an essential "taxi" service. The UNC-93B protein attaches itself to TLR 3, TLR 7, and TLR 9 and facilitates their transport from the compartment in the cell where they are made to the endolysosome.

Using geneticists' tools of the trade, Kono and colleagues, engineered lupus-prone mice with an inactive Unc93b1 gene. Compared to lupus-prone mice with a functioning Unc93b1 gene, the mice with the Unc93b1 mutation produced fewer antinuclear antibodies and had fewer and less severe symptoms of lupus.

As a further test, Kono and colleagues treated the mutant mice with a substance that stimulates TLR 4—as TLR 4 stimulation is known to promote the production of autoantibodies. But even with TLR 4 stimulation, the mice lacking functioning TLR 3, TLR 7, and TLR 9 did not develop lupus.

"It seems like these three TLRs are absolutely required for optimal autoantibody production," says Kono. "This is an important finding that builds on results obtained by other groups."

The results "suggest that the three endosomal TLRs, or UNC-93B itself, might be good targets for therapy," says Kono, adding that more tests will be needed before these findings are translated into treatments for patients. "We are definitely getting closer to understanding the etiology of this autoimmune disease."

In addition to Kono, other co-authors of the article "Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus," include M. Katarina Haraldsson, Brian R. Lawson, K. Michael Pollard, Yi Ting Koh, Xin Du, Carrie N. Arnold, Roberto Baccala, Bruce Beutler, and Argyrios N. Theofilopoulos of The Scripps Research Institute, and Gregg J. Silverman of the University of California, San Diego.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>