Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists move closer to developing therapeutic window to the brain


Transparent skull implant created by UCR-led team will allow doctors to deliver life-saving laser treatments to patients with brain disorders

Researchers at the University of California, Riverside are bringing their idea for a 'Window to the Brain' transparent skull implant closer to reality through the findings of two studies that are forthcoming in the journals Lasers in Surgery and Medicine and Nanomedicine: Nanotechnology, Biology and Medicine.

This is an illustration showing how the "Window to the Brain" transparent skull implant created by UC Riverside researchers would work.

Credit: UC Riverside

The implant under development, which literally provides a 'window to the brain,' will allow doctors to deliver minimally invasive, laser-based treatments to patients with life-threatening neurological disorders, such as brain cancers, traumatic brain injuries, neurodegenerative diseases and stroke. The recent studies highlight both the biocompatibility of the implant material and its ability to endure bacterial infections.

The Window to the Brain project is a multi-institution, interdisciplinary partnership led by Guillermo Aguilar, professor of mechanical engineering in UCR's Bourns College of Engineering, and Santiago Camacho-López, from the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) in Mexico.

The project began when Aguilar and his team developed a transparent version of the material yttria-stabilized zirconia (YSZ)--the same ceramic product used in hip implants and dental crowns. By using this as a window-like implant, the team hopes doctors will be able to aim laser-based treatments into patients' brains on demand and without having to perform repeated craniotomies, which are highly invasive procedures used to access the brain.

The internal toughness of YSZ, which is more impact resistant than glass-based materials developed by other researchers, also makes it the only transparent skull implant that could conceivably be used in humans. The two recent studies further support YSZ as a promising alternative for currently available cranial implants.

Published July 8 in Lasers in Surgery and Medicine, the most recent study demonstrates how the use of transparent YSZ may allow doctors to combat bacterial infections, which are a leading reason for cranial implant failure. In lab studies, the researchers treated E-Coli infections by aiming laser light through the implant without having to remove it and without damaging the surrounding tissues.

"This was an important finding because it showed that the combination of our transparent implant and laser-based therapies enables us to treat not only brain disorders, but also to tackle bacterial infections that are common after cranial implants. These infections are especially challenging to treat because many antibiotics do not penetrate the blood brain barrier," said Devin Binder, M.D., a neurosurgeon and neuroscientist in UCR's School of Medicine and a collaborator on the project.

Another recent study, published in the journal Nanomedicine: Nanotechnology, Biology and Medicine, explored the biocompatibility of YSZ in an animal model, where it integrated into the host tissue without causing an immune response or other adverse effects.

"The YSZ was actually found to be more biocompatible than currently available materials, such as titanium or thermo-plastic polymers, so this was another piece of good news in our development of transparent YSZ as the material of choice for cranial implants," Aguilar said.

The Window to the Brain team comprises faculty at UCR's Bourns College of Engineering and School of Medicine together with researchers at the University of California, San Diego and three universities in Mexico: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE); Universidad Nacional Autónoma de México (UNAM); and Rubén Ramos-García, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Puebla. Yasaman Damestani, a graduate student in Aguilar's lab, was the lead author of these recent research studies.

Last October, the team received almost $5 million to advance the project over five years. $3.6 million was from the National Science Foundation's Partnerships in International Research and Education (PIRE) program, which pairs U.S. universities with others around the world. An additional $1 million was from Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico's entity in charge of promoting scientific and technological activities. The remainder of the money came from in-kind contributions from the Mexican universities.

The team's long-term goal is to see the technology become the standard of care for patients with brain disorders who would benefit from laser-based treatments.

Media Contact

Sarah Nightingale


Sarah Nightingale | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>