Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists locate disease switches

21.07.2009
A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, using groundbreaking technology, has identified no less than 3,600 molecular switches in the human body.

These switches, which regulate protein functions, may prove to be a crucial factor in human ageing and the onset and treatment of diseases such as cancer, Alzheimer's disease and Parkinson's disease. The results of the team’s work have been published in the current edition of the journal Science.

New perspectives in the treatment of disease
The team, led by Professor Matthias Mann of Novo Nordisk Center for Protein Research at the University of Copenhagen and the Max Planck Institute for Biochemistry in Germany, have detected 3,600 acetylation switches in 1,750 different proteins.

"This is more than just a technological achievement, it has also expanded the number of known acetylation switches by a factor of six, and it gives us for the first time a comprehensive insight into this type of protein modification," says Professor Mann.

A given protein can perform more than one task, and how it behaves is regulated by adding a small molecule that acts as a 'switch' which can turn on the different tasks. Acetylation is essential for cells' ability to function normally. Defective protein regulation plays a role in ageing and the development of diseases such as cancer, Parkinson's and Alzheimer's.

"With the new mapping, we can now begin to study and describe how acetylation switches respond to medications that could repair the defects on them. It can have a major impact on medical care," says Professor Mann, adding that medications to repair the damaged protein regulation are already showing promising in the treatment of cancer.

Cooperating proteins
The team also discovered that acetylation modification occurs primarily on proteins that work together, and that these switches have much greater consequences for the organism's function than previously thought. In one example, the function of Cdc28, an important growth protein in yeast, can be disrupted by the addition of an acetylation button, ultimately affecting the organism's ability to survive.

The results of the team's research were published in the 17 July 2009 edition of Science.

Professor Matthias Mann | EurekAlert!
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>