Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover likely new trigger for epidemic of metabolic syndrome

23.02.2012
UC Davis scientists have uncovered a key suspect in the destructive inflammation that underlies heart disease and diabetes.

The new research shows elevated levels of a receptor present on leucocytes of the innate immune response in people at risk for these chronic diseases. The receptors are the body's first line of defense against infectious invaders, and they trigger a rush of cytokines, the body's aggressive immune soldiers, into the bloodstream.

The research, published in the journal Diabetes Care on Feb. 22, studied individuals diagnosed with metabolic syndrome -- a cluster of cardio-metabolic risk factors linked to many life-threatening diseases. Metabolic syndrome is found in about a third of American adults and people in other industrialized countries.

The syndrome is a high-risk obesity state as previously shown by diabetes expert Ishwarlal Jialal and his team at the UC Davis Medical Center. It increases the risk of developing diabetes at least five-fold and heart disease by two- to four-fold. Jialal, professor of pathology and laboratory medicine at UC Davis Health System, also led the new study.

The receptors, or sensors, on cells are called Toll-like receptors (TLRs), and the Nobel Prize was awarded last year for discoveries that showed they initiate the swift innate immune response to infections. But the inflammation they trigger can also be harmful. In mice it has been shown that two TLRs -- TLR2 AND TLR4 -- are important in the development of both diabetes and heart disease.

These receptors are present in many cells, but they are most abundant on monocytes, a type of white blood cell that plays a central role in the inflammation response to invading microbes. They can be triggered by pathogen products or signals from dying cells and saturated fatty acid.

The UC Davis research focused on TLR2 and TLR4. For the study, researchers evaluated 90 individuals between the ages of 21 and 70, of whom 49 had at least three features characteristic of metabolic syndrome. These included hypertension, low HDL-cholesterol, high triglycerides and obesity, as evidenced by increased waist circumference, or a glucose level between 101-125 mg/dl but not indicative of diabetes. Members of the control group had no more than two such markers. People with atherosclerosis, diabetes, inflammatory or malignant disease, and other disorders were excluded to study the receptor function without confounding variables, and to gain insights into nascent or early metabolic syndrome prior to complications.

Comparisons of the blood of participants from both groups showed that the metabolic syndrome group exhibited significantly higher levels of both messenger RNA and cell-surface receptor proteins TLR2 and TLR4, increased levels of the master switch of inflammation in the nucleus, and a much higher concentration of immune soldiers in the blood, such as cytokines, that create inflammation.

All of these abnormalities were independent of obesity, suggesting they are due to the metabolic-syndrome environment. The levels of both free fatty acids and the product of gram-negative bacteria endotoxin also were increased in the blood of individuals with metabolic syndrome at least two- and three-fold respectively, and explained in part the TLR4 increase.

The research suggests that suppressing TLR activity with weight loss and with diet, exercise and drugs targeted specifically at these receptors, might prove effective in treating heart disease, diabetes and other conditions linked to metabolic syndrome.

Jialal pointed out that not all obese people suffer from the constellation of symptoms that make up metabolic syndrome, and in fact, about 30 percent of obese people are at low risk for metabolic complications, according to one key study. But since research shows increased inflammation in obese people, the Toll-like receptor and monocyte findings may help define individuals at high risk for obesity.

Jialal's research group reported last year that monocytes and related macrophages were present in the fat of individuals with metabolic syndrome and that their fat was more inflamed. The new finding shows that the Toll-like sentinel proteins might be directing an increase in this activity, and that the inflammatory agents are making it into the bloodstream, from where they can go to any part of the body, including fat, liver and heart.

The research is funded by the American Diabetes Association.

UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering innovative, interprofessional education, and creating dynamic, productive partnerships with the community. The academic health system includes one of the country's best medical schools, a 631-bed acute-care teaching hospital, an 800-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all. For more information, visit healthsystem.ucdavis.edu.

Carole Gan | EurekAlert!
Further information:
http://www.healthsystem.ucdavis.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>