Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how gene mutation triggers immune disease

31.01.2018

Study tests treatment that worked in donated cells from patient

Scientists discovered how a gene mutation affects T cell function to promote immune disorders and then tested a treatment based on the discovery--successfully fixing donated immune cells from a 16-year-old boy with an abnormally low level of white blood cells called lymphopenia.


This confocal microscopic image of a healthy mouse T cell uses color florescence to illustrate how the protein Gimap5 (upper-right faint green area) and the enzyme GSK3 (red) overlap in small structures called vesicles inside cells (colocalized yellow area). This happens before GSK3 enters the cell nucleus (shown in blue). This step is important to limit DNA damage in active T cells during their expansion. The image is part of a study published Jan. 30 by Nature Communications from researchers at Cincinnati Children's.

Credit: Cincinnati Children's / Publication in Nature Communications

Cincinnati Children's researchers report their findings Jan. 30 in Nature Communications. The discovery centers on mutation of the gene Gimap5, which is important to the healthy formation and function of CD4+ T cells, one of the immune system's super soldiers against infection and disease.

The protein associated with the Gimap5 gene (also Gimap5), is important because it regulates a protein that inactivates an enzyme called GSK3, researchers said. If GSK3 isn't inactivated it causes DNA damage in T cells that are expanding, causing the cells to not survive or function correctly. In mice and human blood cells, the researchers tested drugs that inhibit GSK3, improving immune system function in mice and restoring normal T cell function in the human cells.

GSK3 inhibitors already are used to treat other diseases like Alzheimer's, mood disorders and diabetes mellitus.

"Our data suggest GSK3 inhibitors will improve T cell survival and function and may prevent or correct immune-related disorders in people with Gimap5 loss-of-function mutations," said Kasper Hoebe, PhD, Division of Immunobiology. "Therapeutically targeting this pathway may be relevant for treating people with Gimap5 mutations linked to autoimmunity in Type 1 diabetes, systemic lupus erythematosus or asthma."

Hoebe led the study, together with Andrew Patterson, a PhD student in Hoebe's lab, and Jack Bleesing, MD, PhD, in the Division of Bone Marrow Transplantation and Immune Deficiency.

Immune system disorders lead to abnormally low immune activity (deficiency) or overactivity (autoimmunity). Immune deficiency diseases decrease the body's ability to fight infection, while autoimmunity prompts the body to attack its own tissues. Both are common causes of illness, and malfunctioning T cells are linked to both.

Translating the Science

Authors of the current study said additional research is needed before the data have clinical relevance for patients. New experiments are underway to translate the findings into the clinic, Hoebe said.

The scientists are investigating if and how genetic variants in Gimap5 affect GSK3 regulation cause malfunctioning T cells in patients with immune disorders. They also are exploring the therapeutic potential of GSK3 inhibitors in preclinical mouse models of allergic lung disease and lupus to see if they can improve patient outcomes.

"We believe the use of GSK3 inhibitors to prevent or correct these type of immune-related diseases holds great potential," Hoebe said.

GIMAP5 Backstory

The Gimap5 gene controls its associated protein Gimap5 (GTPase of immunity associated protein 5). As the name suggests, its role is mainly linked to immune system function, lymphocyte white blood cell survival and T cell formation in the thymus.

Genetic variants in Gimap5 were already associated with autoimmunity and colitis, but their specific biological mechanisms have remained unclear. Hoebe and colleagues show Gimap5 is essential for inactivating the GSK3 enzyme (known as glycogen synthase kinase-3) when T cells are activated. Otherwise, the activity of GSK3 constrains other molecular processes and prevents T cells from completing their cell cycle to full functionality.

###

Besides Cincinnati Children's, which led the research, the study included collaborators at the Harvard T.H. Chan School of Public Health, the Cleveland Clinic and Mt. Sinai Hospital in Toronto.

Funding support came in part from the Crohn's & Colitis Foundation of America (#3793), the National Institutes of Health and National Institute of Diabetes and Digestive and Kidney Diseases (P30-DK078392) and the Integrative Morphology Core of the Cincinnati Digestive Disease Research Core Center at Cincinnati Children's.

Nick Miller | EurekAlert!

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>