Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistance to antibiotics can be drawback for bacteria

06.01.2010
Neisseria meningitidis, the meningococcus, is a bacterium that can cause diseases with high fatality rates, and there has therefore been considerable concern that, like other bacteria, it might become resistant to antibiotics.

But now a study from Örebro University and Örebro University Hospital in Sweden shows that there has not been any increase in resistant meningococci in Sweden over the last 15 years. According to researcher Sara Thulin Hedberg, the reason for this may be that it is not especially advantageous for bacteria to develop resistance.

Meningococci are usually harmless bacteria, and about one person in ten carries them in their throats or airways without knowing it. But they can also make their way into the blood and through the blood-brain barrier and cause blood poisoning and/or meningitis, and then the fatality rate is high, about 10 percent.

It has therefore been disturbing to see reports from most countries in recent years that meningococci have also begun to be more resistant to antibiotics. But now Sara Thulin Hedberg can establish in her doctoral dissertation in biomedicine that this is not the case in Sweden at present. Even though some of the bacteria have become resistant to individual preparations, they have not increased in number and do not seem to be spreading in society.

"We expected a more negative tendency, considering the dramatic increase in resistant bacteria in society, so these findings are both a surprise and a great relief," she says.

Since meningococci are very good at adapting, using their ability to pick up parts of DNA from other bacteria in the same family, for instance, they have every chance of rapidly changing and developing resistance. But Sara Thulin Hedberg's research indicates that the biological cost is too great for the bacteria. In other words, it is not a formula for success to become resistant.

When she studied meningococci that had become resistant to rifampicin, an antibiotic, she discovered that they do not multiply as rapidly and are not as good at infecting a host. They are quite simply somewhat weaker and not as good at reproducing. This means that they have a hard time competing with susceptible meningococci as soon as they find themselves in an antibiotic-free environment.

The findings from Sara Thulin Hedberg's research may ultimately open new potential for combating resistant bacteria.

"By enhancing our knowledge of how bacteria change and are affected by developing resistance it may be possible to design antibiotics that bacteria find it more difficult to adapt to without excessive cost to themselves."

Sara Thulin Hedberg works at the National Reference Laboratory for Pathogenic Neisseria at Örebro University Hospital, and she has mapped what happens at the genetic level when meningococci change and develop increased resistance to antibiotics. She has studied lines of meningococci from Sweden and Africa and has also carried out part of her research at the Pasteur Institute in Paris.

Sara Thulin Hedberg presents her findings in her doctoral dissertation titled Antibiotic susceptibility and resistance in Neisseria meningitidis - phenotypic and genotypic characteristics.

For more information, please contact Sara Thulin Hedberg, phone: +46 (0)19-602 15 20, e-mail: sara.thulin-hedberg@orebroll.se.

Pressofficer Ingrid Lundegårdh, ingrid.lundegardh@oru.se;+46-705 52 31 26

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>