Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistance to antibiotics can be drawback for bacteria

06.01.2010
Neisseria meningitidis, the meningococcus, is a bacterium that can cause diseases with high fatality rates, and there has therefore been considerable concern that, like other bacteria, it might become resistant to antibiotics.

But now a study from Örebro University and Örebro University Hospital in Sweden shows that there has not been any increase in resistant meningococci in Sweden over the last 15 years. According to researcher Sara Thulin Hedberg, the reason for this may be that it is not especially advantageous for bacteria to develop resistance.

Meningococci are usually harmless bacteria, and about one person in ten carries them in their throats or airways without knowing it. But they can also make their way into the blood and through the blood-brain barrier and cause blood poisoning and/or meningitis, and then the fatality rate is high, about 10 percent.

It has therefore been disturbing to see reports from most countries in recent years that meningococci have also begun to be more resistant to antibiotics. But now Sara Thulin Hedberg can establish in her doctoral dissertation in biomedicine that this is not the case in Sweden at present. Even though some of the bacteria have become resistant to individual preparations, they have not increased in number and do not seem to be spreading in society.

"We expected a more negative tendency, considering the dramatic increase in resistant bacteria in society, so these findings are both a surprise and a great relief," she says.

Since meningococci are very good at adapting, using their ability to pick up parts of DNA from other bacteria in the same family, for instance, they have every chance of rapidly changing and developing resistance. But Sara Thulin Hedberg's research indicates that the biological cost is too great for the bacteria. In other words, it is not a formula for success to become resistant.

When she studied meningococci that had become resistant to rifampicin, an antibiotic, she discovered that they do not multiply as rapidly and are not as good at infecting a host. They are quite simply somewhat weaker and not as good at reproducing. This means that they have a hard time competing with susceptible meningococci as soon as they find themselves in an antibiotic-free environment.

The findings from Sara Thulin Hedberg's research may ultimately open new potential for combating resistant bacteria.

"By enhancing our knowledge of how bacteria change and are affected by developing resistance it may be possible to design antibiotics that bacteria find it more difficult to adapt to without excessive cost to themselves."

Sara Thulin Hedberg works at the National Reference Laboratory for Pathogenic Neisseria at Örebro University Hospital, and she has mapped what happens at the genetic level when meningococci change and develop increased resistance to antibiotics. She has studied lines of meningococci from Sweden and Africa and has also carried out part of her research at the Pasteur Institute in Paris.

Sara Thulin Hedberg presents her findings in her doctoral dissertation titled Antibiotic susceptibility and resistance in Neisseria meningitidis - phenotypic and genotypic characteristics.

For more information, please contact Sara Thulin Hedberg, phone: +46 (0)19-602 15 20, e-mail: sara.thulin-hedberg@orebroll.se.

Pressofficer Ingrid Lundegårdh, ingrid.lundegardh@oru.se;+46-705 52 31 26

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>