Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key proteins responsible for electrical communication in the heart

14.01.2014
Findings shed light on the root of healthy heart function and reveal a class of drugs that can prevent erratic heartbeats tied to heart attacks, strokes and other health conditions

Cedars-Sinai Heart Institute researchers have found that six proteins – five more than previously thought – are responsible for cell-to-cell communication that regulates the heart and plays a role in limiting the size of heart attacks and strokes.

The smallest of these proteins directs the largest in performing its role of coordinating billions of heart cells during each heartbeat. Together, the proteins synchronize the beating heart, the researchers determined.

"We now know these proteins exist," said Robin Shaw, MD, PhD, the senior author of the study published in the journal Cell Reports. "The findings advance our understanding of cell-to-cell communication at the root of healthy heart function. When there is less cell communication, which occurs in failing hearts, chances are greater of disturbances in heart rhythm that can result in disability or death."

Until now, scientists had recognized just one protein involved in cell-to-cell communication that occurs through conduits known as "gap junctions." The Cedars-Sinai researchers identified five additional proteins that regulate the rapid flow of electrical communication signals, coordinating heart cells to produce a stable heartbeat.

"The finding of alternative translation start sites within this important group of proteins adds startling diversity to a key biological process, namely that whereby heart cells communicate with each other electrically," said Eduardo Marbán, MD, PhD, director of the Cedars-Sinai Heart Institute. "The implications are major for arrhythmias and heart failure."

Through a phenomenon called "alternative translation," the protein-making machinery in each cell can produce shorter proteins from the same gene that encodes the largest of the proteins. Biologists had known of the existence of alternative translation but had not completely understood its physiological relevance. The Cedars-Sinai research team led by Shaw has expanded the understanding of this process and continues to study the precise role of the proteins produced by it.

The researchers also have determined that a class of drugs known as "mTOR inhibitors" – those already used for immunosuppression in organ transplants – can affect alternative translation, changing the balance of proteins in hearts cells, increasing the amount of electrical coordination in the heart. The findings suggest that mTOR inhibitors can be used to prevent erratic and sometimes fatal heart rhythms.

A properly beating heart is necessary to pump blood to the brain, lungs and other organs. When arrhythmias occur in the heart's main pumping chamber, the heart can stop, resulting in sudden cardiac arrest, the most common cause of death among heart patients. Preventing arrhythmias is a top clinical priority. The possibility of using mTOR inhibitors suggests that drugs used to treat transplanted hearts could also be used to treat failing hearts.

Cell-to-cell communication occurs in all other organs. The same proteins that help heart cells communicate also play a role in brain function, bone development and insulin production in the pancreas. These proteins also affect the contraction of muscle cells within the uterus during childbirth and may potentially suppress cancer cells. The finding that mTOR inhibitors improve cell-to-cell communication indicates that this class of drugs could be useful to treat multiple disorders.

Sally Stewart | EurekAlert!
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>