Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key proteins responsible for electrical communication in the heart

14.01.2014
Findings shed light on the root of healthy heart function and reveal a class of drugs that can prevent erratic heartbeats tied to heart attacks, strokes and other health conditions

Cedars-Sinai Heart Institute researchers have found that six proteins – five more than previously thought – are responsible for cell-to-cell communication that regulates the heart and plays a role in limiting the size of heart attacks and strokes.

The smallest of these proteins directs the largest in performing its role of coordinating billions of heart cells during each heartbeat. Together, the proteins synchronize the beating heart, the researchers determined.

"We now know these proteins exist," said Robin Shaw, MD, PhD, the senior author of the study published in the journal Cell Reports. "The findings advance our understanding of cell-to-cell communication at the root of healthy heart function. When there is less cell communication, which occurs in failing hearts, chances are greater of disturbances in heart rhythm that can result in disability or death."

Until now, scientists had recognized just one protein involved in cell-to-cell communication that occurs through conduits known as "gap junctions." The Cedars-Sinai researchers identified five additional proteins that regulate the rapid flow of electrical communication signals, coordinating heart cells to produce a stable heartbeat.

"The finding of alternative translation start sites within this important group of proteins adds startling diversity to a key biological process, namely that whereby heart cells communicate with each other electrically," said Eduardo Marbán, MD, PhD, director of the Cedars-Sinai Heart Institute. "The implications are major for arrhythmias and heart failure."

Through a phenomenon called "alternative translation," the protein-making machinery in each cell can produce shorter proteins from the same gene that encodes the largest of the proteins. Biologists had known of the existence of alternative translation but had not completely understood its physiological relevance. The Cedars-Sinai research team led by Shaw has expanded the understanding of this process and continues to study the precise role of the proteins produced by it.

The researchers also have determined that a class of drugs known as "mTOR inhibitors" – those already used for immunosuppression in organ transplants – can affect alternative translation, changing the balance of proteins in hearts cells, increasing the amount of electrical coordination in the heart. The findings suggest that mTOR inhibitors can be used to prevent erratic and sometimes fatal heart rhythms.

A properly beating heart is necessary to pump blood to the brain, lungs and other organs. When arrhythmias occur in the heart's main pumping chamber, the heart can stop, resulting in sudden cardiac arrest, the most common cause of death among heart patients. Preventing arrhythmias is a top clinical priority. The possibility of using mTOR inhibitors suggests that drugs used to treat transplanted hearts could also be used to treat failing hearts.

Cell-to-cell communication occurs in all other organs. The same proteins that help heart cells communicate also play a role in brain function, bone development and insulin production in the pancreas. These proteins also affect the contraction of muscle cells within the uterus during childbirth and may potentially suppress cancer cells. The finding that mTOR inhibitors improve cell-to-cell communication indicates that this class of drugs could be useful to treat multiple disorders.

Sally Stewart | EurekAlert!
Further information:
http://www.cshs.org

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>