Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify key proteins responsible for electrical communication in the heart

Findings shed light on the root of healthy heart function and reveal a class of drugs that can prevent erratic heartbeats tied to heart attacks, strokes and other health conditions

Cedars-Sinai Heart Institute researchers have found that six proteins – five more than previously thought – are responsible for cell-to-cell communication that regulates the heart and plays a role in limiting the size of heart attacks and strokes.

The smallest of these proteins directs the largest in performing its role of coordinating billions of heart cells during each heartbeat. Together, the proteins synchronize the beating heart, the researchers determined.

"We now know these proteins exist," said Robin Shaw, MD, PhD, the senior author of the study published in the journal Cell Reports. "The findings advance our understanding of cell-to-cell communication at the root of healthy heart function. When there is less cell communication, which occurs in failing hearts, chances are greater of disturbances in heart rhythm that can result in disability or death."

Until now, scientists had recognized just one protein involved in cell-to-cell communication that occurs through conduits known as "gap junctions." The Cedars-Sinai researchers identified five additional proteins that regulate the rapid flow of electrical communication signals, coordinating heart cells to produce a stable heartbeat.

"The finding of alternative translation start sites within this important group of proteins adds startling diversity to a key biological process, namely that whereby heart cells communicate with each other electrically," said Eduardo Marbán, MD, PhD, director of the Cedars-Sinai Heart Institute. "The implications are major for arrhythmias and heart failure."

Through a phenomenon called "alternative translation," the protein-making machinery in each cell can produce shorter proteins from the same gene that encodes the largest of the proteins. Biologists had known of the existence of alternative translation but had not completely understood its physiological relevance. The Cedars-Sinai research team led by Shaw has expanded the understanding of this process and continues to study the precise role of the proteins produced by it.

The researchers also have determined that a class of drugs known as "mTOR inhibitors" – those already used for immunosuppression in organ transplants – can affect alternative translation, changing the balance of proteins in hearts cells, increasing the amount of electrical coordination in the heart. The findings suggest that mTOR inhibitors can be used to prevent erratic and sometimes fatal heart rhythms.

A properly beating heart is necessary to pump blood to the brain, lungs and other organs. When arrhythmias occur in the heart's main pumping chamber, the heart can stop, resulting in sudden cardiac arrest, the most common cause of death among heart patients. Preventing arrhythmias is a top clinical priority. The possibility of using mTOR inhibitors suggests that drugs used to treat transplanted hearts could also be used to treat failing hearts.

Cell-to-cell communication occurs in all other organs. The same proteins that help heart cells communicate also play a role in brain function, bone development and insulin production in the pancreas. These proteins also affect the contraction of muscle cells within the uterus during childbirth and may potentially suppress cancer cells. The finding that mTOR inhibitors improve cell-to-cell communication indicates that this class of drugs could be useful to treat multiple disorders.

Sally Stewart | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht U of T research sheds new light on mysterious fungus that has major health consequences
23.11.2015 | University of Toronto

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Plant Defense as a Biotech Tool

25.11.2015 | Life Sciences

“move“ – on course for the mobility of the future

25.11.2015 | Power and Electrical Engineering

Understanding a missing link in how antidepressants work

25.11.2015 | Life Sciences

More VideoLinks >>>