Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify Achilles heel of common childhood tumor

21.10.2008
Mechanism for rapid growth of infantile hemangiomas discovered

Researchers have discovered a mechanism for the rapid growth seen in infantile hemangioma, the most common childhood tumor.

The tumors, which are made up of proliferating blood vessels, affect up to 10 percent of children of European descent, with girls more frequently afflicted than boys. The growths appear within days of birth—most often as a single, blood-red lump on the head or face—then grow rapidly in the ensuing months. The development of infantile hemangioma slows later in childhood, and most tumors disappear entirely by the end of puberty. However, while the tumors are benign, they can cause disfigurement or clinical complications. This new research offers hope for the most severe of these cases, pointing at a potential, non-invasive treatment for the condition.

These findings, the result of a collaboration between scientists from Harvard Medical School and the Harvard School of Dental Medicine, Children's Hospital Boston, and the de Duve Institute at the Catholique University of Louvain in Brussels, will be published October 19 in Nature Medicine.

In this study, researchers looked at tissue isolated from nine distinct hemangioma tumors. They found that the endothelial cells that lined the affected blood vessels were all derived from the same abnormal cell. Like other tumors, hemangiomas are caused by the abnormal proliferation of tissue. Since no other type of cell within the tissue displayed the same self-replicating tendency, the scientists concluded that the endothelial cells were the source of the tumors' growth.

Looking further, the team discovered that the endothelial cells behaved as if they were activated by a hormone called vascular endothelial growth factor (VEGF). VEGF usually binds to a specific receptor, one that sits on the outskirts of the cell and prevents VEGF from telling the cell to proliferate. However, the researchers found that at least two gene mutations were capable of setting off a chain of events that ultimately stymied those receptors. That allowed VEGF to trigger unchecked growth in the endothelial cells.

These findings open up new treatment options, according to study leader Bjorn R. Olsen, the Hersey Professor of Cell Biology at Harvard Medical School and Professor of Developmental Biology and Dean for Research at Harvard School of Dental Medicine. "What the data suggests is that any therapy that is directed against vascular endothelial growth factor – anti-VEGF therapy – is the rational therapy to use in these tumors," says Olsen.

This will be good news to the many children and families affected by the disorder. Though most cases have little impact on children's lives and many cases even go unnoticed, Olsen estimates that 10 percent of infantile hemangioma sufferers experience significant side-effects. These can include psychological stress brought on by the social challenges of disfigurement, as well as physical complications caused by large, badly-placed tumors that obstruct vision, respiration, or other bodily functions.

Anti-VEGF therapies have already been approved for other conditions, including macular degeneration and certain types of cancer. The next step for Olsen's team is to get approval to test these therapies in clinical trials.

Meanwhile, Olsen and his colleagues continue to mine these tumors for more answers. "After finding out why these tumors grow, we are now starting to direct our research at understanding why they regress," he said. "Knowing that and being able to induce that regression in the rapidly growing tumors, or induce regression of the blood vessels in malignant tumors, would be very effective."

Alyssa Kneller | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>