Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify Achilles heel of common childhood tumor

21.10.2008
Mechanism for rapid growth of infantile hemangiomas discovered

Researchers have discovered a mechanism for the rapid growth seen in infantile hemangioma, the most common childhood tumor.

The tumors, which are made up of proliferating blood vessels, affect up to 10 percent of children of European descent, with girls more frequently afflicted than boys. The growths appear within days of birth—most often as a single, blood-red lump on the head or face—then grow rapidly in the ensuing months. The development of infantile hemangioma slows later in childhood, and most tumors disappear entirely by the end of puberty. However, while the tumors are benign, they can cause disfigurement or clinical complications. This new research offers hope for the most severe of these cases, pointing at a potential, non-invasive treatment for the condition.

These findings, the result of a collaboration between scientists from Harvard Medical School and the Harvard School of Dental Medicine, Children's Hospital Boston, and the de Duve Institute at the Catholique University of Louvain in Brussels, will be published October 19 in Nature Medicine.

In this study, researchers looked at tissue isolated from nine distinct hemangioma tumors. They found that the endothelial cells that lined the affected blood vessels were all derived from the same abnormal cell. Like other tumors, hemangiomas are caused by the abnormal proliferation of tissue. Since no other type of cell within the tissue displayed the same self-replicating tendency, the scientists concluded that the endothelial cells were the source of the tumors' growth.

Looking further, the team discovered that the endothelial cells behaved as if they were activated by a hormone called vascular endothelial growth factor (VEGF). VEGF usually binds to a specific receptor, one that sits on the outskirts of the cell and prevents VEGF from telling the cell to proliferate. However, the researchers found that at least two gene mutations were capable of setting off a chain of events that ultimately stymied those receptors. That allowed VEGF to trigger unchecked growth in the endothelial cells.

These findings open up new treatment options, according to study leader Bjorn R. Olsen, the Hersey Professor of Cell Biology at Harvard Medical School and Professor of Developmental Biology and Dean for Research at Harvard School of Dental Medicine. "What the data suggests is that any therapy that is directed against vascular endothelial growth factor – anti-VEGF therapy – is the rational therapy to use in these tumors," says Olsen.

This will be good news to the many children and families affected by the disorder. Though most cases have little impact on children's lives and many cases even go unnoticed, Olsen estimates that 10 percent of infantile hemangioma sufferers experience significant side-effects. These can include psychological stress brought on by the social challenges of disfigurement, as well as physical complications caused by large, badly-placed tumors that obstruct vision, respiration, or other bodily functions.

Anti-VEGF therapies have already been approved for other conditions, including macular degeneration and certain types of cancer. The next step for Olsen's team is to get approval to test these therapies in clinical trials.

Meanwhile, Olsen and his colleagues continue to mine these tumors for more answers. "After finding out why these tumors grow, we are now starting to direct our research at understanding why they regress," he said. "Knowing that and being able to induce that regression in the rapidly growing tumors, or induce regression of the blood vessels in malignant tumors, would be very effective."

Alyssa Kneller | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>