Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use High Performance IBM Computer in Pursuit of Medical Treatments

08.08.2008
Researchers at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School have selected a high performance IBM computer to perform research they hope will one day lead to more effective treatment of medical conditions like infertility and thyroid problems.

According to the Centers for Disease Control and Prevention, more than two million married couples in the U.S. are infertile; and many millions of Americans are affected by problems associated with the thyroid gland – including weight gain, weight loss, depression, and fatigue – though many may be unaware of the cause.

The UMDNJ researchers are using the IBM system to create models of proteins and study the behavior of certain types of sensory molecules, called receptors, which regulate fertility and thyroid function. These receptors are related to a family of proteins that perform diverse functions ranging from detecting light and odors, to controlling blood pressure and regulating heart function.

While the types of receptors being studied make up a large number of the molecules found in the human genome, and are common targets for drug treatments, very little is known about how they work at the molecular level. By learning more about this, the researchers at UMDNJ hope to discover how different types of drugs might be used to treat certain medical conditions more effectively.

... more about:
»X-ray

Using the high performance IBM system, which has a peak speed of one teraflops (one trillion floating point operations per second), the UMDNJ researchers are able to dramatically accelerate the pace of their work. Calculations that would have normally taken them a year to complete on a single workstation can now be done in just four days.

Currently, the only way to view the makeup of a protein is through a 50-year old process called X-ray crystallography, which involves crystallizing the protein and using a beam of X-rays to get an image – called a crystal structure – of the positions of the atoms within it. However, the receptors being studied at UMDNJ are membrane proteins and, due to the difficulty of crystallizing this type of protein, crystal structures exist for only two molecules of this entire family of related proteins. Furthermore, because crystal structures provide only a snapshot in time, it has been difficult for researchers to understand how these types of receptors work.

To get around this problem, the UMDNJ researchers are using the IBM computer, an e1350 Linux cluster composed of System x3550 servers and 96 processors, to run a program called Amber that was designed by researchers at the University of California. Amber works by moving the simulated atoms of a receptor hundreds of thousands of times per second, many times over, until the researchers get a better idea of how the receptor is likely to react to other molecules. This process requires computational capabilities far exceeding those of traditional computers.

“The type of research we’re performing is very unique, and it requires some pretty mind-boggling calculations that could have never been done on our older systems,” said Les Michelson, PhD, assistant director for special projects at UMDNJ.

Also involved in the project is John Kerrigan, PhD, associate director of bioinformatics at The Cancer Institute of New Jersey, which is a Center of Excellence of UMDNJ-Robert Wood Johnson Medical School. He says, "With the power of our IBM system, we’re gaining new insights into how these complex molecular switches known as receptors function. The computer models help guide experimental design in the lab as well as generate new hypotheses."

“With its significant price/performance advantages and simplified management capabilities, the e1350 Linux cluster is the ideal high performance computing platform for the ambitious and important work being done by the researchers at UMDNJ,” said Dave Turek, vice president of deep computing at IBM.

The researchers have chosen to focus first on receptors that affect fertility and thyroid function because of the amount of biological information that already exists, and because of the prevalence of those problems.

Additionally, because the receptors that control reproduction and thyroid function have features that are common to other receptors, the UMDNJ scientists hope their research will also provide insights into the functions of this large receptor family. This could help uncover better drug treatments for medical conditions unrelated to thyroid function or infertility.

About UMDNJ-Robert Wood Johnson Medical School
As one of the nation's leading comprehensive medical schools, UMDNJ-Robert Wood Johnson Medical School is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health.

UMDNJ is the nation’s largest free-standing public health sciences university with more than 5,700 students attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and a school of public health on five campuses. Annually, there are more than two million patient visits at UMDNJ facilities and faculty practices at campuses in Newark, New Brunswick/Piscataway, Scotch Plains, Camden and Stratford. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, a statewide mental health and addiction services network.

Patricia M. Hansen | Newswise Science News
Further information:
http://www.ibm.com/systems/clusters
http://www.umdnj.edu

Further reports about: X-ray

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>